

Video Game
Development

C U R R I C U L U M

Training Manual

© 2006 I Support Learning, Inc. All Rights Reserved

 2

TABLE OF CONTENTS

CERTIFICATION MODULE I: GAME ENGINES, PROGRAMS, AND BASIC COMMANDS 4

Certification I Worksheet – Teacher’s Version ... 5

Game Engines and Programming .. 7
 VIDEO: Introduction to DarkBASIC (3:54) .. 7

Programs Are... .. 8
 ANIMATION: Chocolate Milk Program Simulator ... 8
 VIDEO: Load and Run a Program (0:40) ... 8

Writing a Program .. 9
 WATCH VIDEO: Remark Statements (1:51) .. 9
certification1_1.dba .. 10

Program Structure .. 13
 VIDEO: Program Structure (4:00) ... 13
 VIDEO: Editing Program Code (1:58) ... 13
 VIDEO: Changing the Cube’s Size (2:47) ... 13
certification1_2.dba .. 14

Basic Commands.. 17
Printing and Text .. 17
 VIDEO: Print and Text Using the CLI (2:13) .. 17
 VIDEO: Using a Background (2:39) .. 19
certification1_3.dba .. 20

Do Loops .. 24
 ANIMATION: Pit Stop .. 24
 VIDEO: Do Loops (4:20) ... 24
certification1_4.dba .. 25

Debugging .. 28
 VIDEO: Print Statement Trick and Debugging (4:06) ... 28

First Debugging .. 28
 VIDEO: Problem with the Program (4:55) ... 28
certification1_5.dba .. 29

CERTIFICATION MODULE II: VARIABLES, MATH, FOR/NEXT LOOPS, AND IF/THEN STATEMENTS 32

Certification II Worksheet – Teacher's Version .. 33

Variables ... 37
 ANIMATION: Chocolate Milk Variables .. 37
 VIDEO: Variables (6:07) ... 37
certification2_1.dba .. 38

Math .. 42
 VIDEO: Equations in Code (2:50) ... 43

Random Numbers ... 44
 VIDEO: Generating Random Numbers (1:55) ... 44
 VIDEO: Using Randomly Generated Numbers (2:36) ... 44
 VIDEO: Variables and Random Numbers (3:22) ... 45
certification2_2.dba .. 46

FOR/NEXT Loops ... 50
 ANIMATION: Race Car Laps ... 50
 VIDEO: Inserting a FOR/NEXT Loop (2:21) .. 50
 VIDEO: FOR/NEXT Loops in a Game (3:20) ... 51
certification2_3.dba .. 52

IF/THEN Statements ... 56
 ANIMATION: Stoplight .. 56

Logical Operators ... 58
 VIDEO: IF/THEN Loops in a Game (4:29) ... 59
 VIDEO: Inserting IF/THEN Loops (4:13) ... 59
certification2_4.dba .. 60

 3

CERTIFICATION MODULE III: 2D AND 3D GAME WORLDS, OBJECTS, AND CAMERAS 64

Certification III Worksheet – Teacher's Version .. 65

2D and 3D Game Worlds .. 69
Advantages of 3D ... 69
Advantages of 2D ... 69

Objects .. 70
 VIDEO: Objects (1:18) .. 70
certification3_1.dba .. 71
certification3_1-demo.dba .. 77

The 3D World .. 82
certification3_2.dba .. 83
certification3_2-demo.dba .. 88

Animated Objects ... 92
 VIDEO: Animated Objects (3:16) .. 92
certification3_walk.dba... 93

The challenge of creating animated models ... 95
Multiple objects .. 95
 VIDEO: Multiple Objects (4:19) .. 95
certification3_3.dba .. 96

View / Camera .. 101
 VIDEO: Cameras in a Game (4:32) ... 101
certification3_4.dba .. 102

CERTIFICATION MODULE IV: INPUT, COLLISION, TEXTURE, SOUND, PACKING AND FINAL EXE 107

Certification IV Worksheet – Teacher’s Version .. 108

Input - Human Touch.. 110
 VIDEO: Input from Humans (6:25) ... 110
certification4_1.dba .. 111

Collision .. 119
 VIDEO: Collisions (4:06) .. 119
certification4_2.dba .. 120

Textures .. 126
 VIDEO: Textures (3:10) ... 126
 VIDEO: Texture Examples in Game Code (3:36) .. 126
certification4_3.dba .. 127

Sounds ... 133
 VIDEO: Sounds in Game Code (4:18) ... 133
certification4_4.dba .. 134

Packing and Final EXE ... 141
 VIDEO: Making a Final EXE (1:22) .. 141

Final Packaging Checklist ... 142

 4

Certification Module I
Game Engines, Programs, Basic Commands

 5

Certification I Worksheet

Teacher’s Version

The game engine used in this certification is called Dark Basic .
 (found on Certification page)

The folder that the certification files are found under is

myproj \ isl
(found in Introduction to Dark Basic video)

Show two different series of steps that did give you a glass of chocolate milk.

 glass glass

 milk chocolate

 chocolate milk

 stir stir

 straw straw
(found in Chocolate Milk Simulator)

Program languages have grammar just like English, Spanish, and Swahili. Programmers refer to

the grammar of programming language as

 syntax .
 (found on Certification page)

Some common programming languages are:

Java, C++, Basic, C, HTML

(found on Certification page)

Remark statements, or REM statements, are used to do what?

REM statements allow a programmer to insert text into the program that can be

read while viewing the program code, but is not used by the program or seen by

the user.

(found in Remark Statements video)

 6

Certification I Worksheet
Teacher’s Version

List two reasons why program structure is important when designing computer game programs.

Program structure helps to organize the parts of a program. It makes it easier for

other programmers. It’s a common map of the program. Different programming

languages require the program to be in a certain sequence or order.

(found on Certification page and in Program Structure video)

When editing a program with the editor, it is similar to using A .

 (found in Editing Program Code video)

A. A word processor

B. A calculator

C. A pad of paper and ruler

The Cube’s scale changed the Cube’s C .

 (found in Changing the Cube’s Scale video)

A. Color

B. Texture

C. Size

Examples of two different commands you used with the CLI (Command Line Interface) to write

text onto the screen.

print “hello”

center text 320,240 “hello”

(found on Certification page and in Print and Text Using the CLI video)

A DO LOOP is used to A .

 (found in Do Loops video)

A. Do a series of actions until a condition inside the loop causes the program to move out of

the loop.

B. Direct Objects through a loop structure

C. Make a decision

The command set cursor 0,50 would have the text placed A .

 (found in Problem with the Program video)

A. On the left edge of the screen and 50 pixels down from the top

B. On the right edge of the screen and 50 pixels up from the bottom

C. Horizontally centered at 0 with a length of 50

 7

Game Engines and Programming

Game engines are special software programs that help programmers

create games. If you have ever heard of the game DOOM (© id

Software), then you also know one of earliest and most successful

games to be created using a game engine. Before games like Doom and

Wolfenstein, the programmers built the games from scratch. Id Software

proved the value of having a solid game engine to use, and the concept

of the game engine helped fuel the success of the FPS (First Person

Shooter) games, which paved the way for a new approach to creating

video games.

So what makes a game engine a game engine? Let’s look at a race car as a model. You can take the

engine out of the car and build a new body around it. The outside will look like a new car, but what

“drives” the car is the same “engine.” Just like a car’s engine is not specific to the car, a game engine is

not specific to a game. To programmers, an engine is the non-game-specific software that the game uses

to run.

Typically, a game engine will include a renderer (which presents the player’s point of view on the

screen), a culler (which removes objects that cannot be seen at that moment of play), a 3D world

generator (which keeps track of where objects are in the “game’s world”), and many other bits to make

the development of a game easier.

Let’s take a quick tour the game engine you will be using in your development work.

 VIDEO: Introduction to Dark Basic (3:54)

 WORKSHEET

The game engine used in this certification is called Dark Basic.

The folder that the certification files are found under is myproj\isl

 8

Programs Are...

You can think of a program as a list of things to do, in sequence. Since computers are essentially stupid,

you have to tell the computer everything it needs to know, including when and how it should do it.

If a program is nothing more than a series of steps in a specific sequence, then you and I perform

“programs” each day. Brushing your teeth, washing your hair, making a bowl of cereal are all examples

of regular activities that you do that can be described as a series of actions, or a program.

Use the animation below, and try your hand at the sequence

of steps necessary to make a glass of chocolate milk.

 ANIMATION: Chocolate Milk Program Simulator

 WORKSHEET

Show two different series of steps that did give you a glass

of chocolate milk.

glass, milk, chocolate, stir, straw

glass, chocolate, milk, stir, straw

Loading in a Game into the Game Engine

 VIDEO: Load and Run a Program (0:40)

To start up Dark Basic, look for this icon on your computer's desktop:

 Your Action:

Start up Dark Basic. Load in the game file certification1_1.dba. Run the game by selecting RUN and

then EXECUTE from the top menu.

The game you just loaded and used was a simple program. The program waited to see what key you

pressed and then reacted by showing you the cube moving on the screen. As a game goes, the Cube

Game really isn’t much of a game, but it is a simple example of what a game program does. It gets input

from the player, combines it with information from the game program, and displays what is happening

in the “game world”.

 9

Writing a Program

Writing a program is similar to writing a play. A play has a beginning,

middle, and ending; so does a program. Just like a play, a program uses

a language. This language has the correct grammar -- also called syntax

-- that must be used so the actors and those watching the play can

understand correctly what the playwright wants. A good playwright

carefully writes what each actor is to do and say, so that all the action

and dialog of the play flows smoothly.

 WORKSHEET

Program languages have grammar just like English, Spanish, and Swahili. Programmers refer to the

grammar of programming language as syntax.

Programs are written in a specific language, just like people in Germany speak German, and people in

Portugal speak Portuguese. Different programs are written in different languages, and programmers

typically become proficient in a few different languages. Deciding the language to use depends on a

number of different factors. On what hardware will the program be used? What type of program is it?

Will the program be used over the internet? Depending on these factors and a few more, the program

may be written in any number of different program languages. A few common languages in use today

are Basic, Java, C++, C, and HTML.

 WORKSHEET

Some common programming languages are: Java, C++, Basic, C, HTML

 WATCH VIDEO: Remark Statements (1:51)

 WORKSHEET

Remark statements, or REM statements, are used to do what?

REM statements allow a programmer to insert text into the program that can be read while viewing the

program code, but is not used by the program or seen by the user.

 Your Action:

Load in the game file certification1_1.dba and see how REM statements are used to document the

program.

 10

certification1_1.dba

REM ***

 A REM statement tells the compiler to ignore this line of code. It is for the reader’s benefit only.

RemStart  This command marks the beginning of a block of “remmed-out” code.

 *** TITLE - Introduction to DarkBASIC

 *** VERSION - 1.1 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

  All the lines between a RemStart and RemEnd will be ignored (the *’s are just for looks)

RemEnd  This command marks the end of a block of “remmed-out” code.

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam on

hide mouse

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM SET VARIABLES

REM SCREEN DISPLAY

cls 0 : center text 320,240,"HIT ANY KEY TO BEGIN"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 11

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0 : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100

REM LOAD MODELS

REM SET CAMERA

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1aY# = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Leftkey()=1 then 1aY# = wrapvalue(1aY#-5)

 if Rightkey()=1 then 1aY# = wrapvalue(1aY#+5)

 if Inkey$()="q"

 delete object 1 : backdrop off : goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY#

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 12

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM SCREEN DISPLAY

cls 0 : center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 Sync

loop

end

REM *** STOP END SECTION

REM ***

 13

Program Structure

Just like a well-written play, programs are well organized, and this organization may be called a

structure. A structure is important in a number of ways. Different programming languages require

different parts of a program to be in a specific sequence. A program structure gives programmers a

common “map”, which can be very important when you have many programmers working on a large

project together. A typical game program structure may look like this:

Introduction Section or Beginning -- The game needs to prepare itself

Title Section -- Tells who wrote the program, version information, copyright, and the like

System Setup Section -- Load special drivers, set system settings like sync rate, sound card,

mouse or controller settings

Introduction Screens -- Display different screens before the game begins -- starting title text,

game options screens, level intros

Main Section or Middle -- Where the real action in the game takes place

Main Header -- Declare variables, load in sounds, textures, models, set starting camera view

Main Loop -- Takes the users input and displays the game action on the screen

End Section or Ending -- What happens when the game is over -- Display final score screen,

may offer restart game option or shuts program down and clears memory

Now let’s look at an example of structure in a game program.

 VIDEO: Program Structure (4:00)

 WORKSHEET

List two reasons why program structure is important when designing computer game programs.

Program structure helps to organize the parts of a program. It makes it easier for other programmers.

It’s a common map of the program. Different programming languages require the program to be in a

certain sequence or order.

Before we practice editing programs, check out this video that talks about editing code.

 VIDEO: Editing Program Code (1:58)

 WORKSHEET

When editing a program with the editor, it is similar to using A: A word processor.

Now watch this video demonstrating how to edit the size of a cube in the game program.

 VIDEO: Changing the Cube’s Size (2:47)

 Your Action:

Load certification1_2.dba and change the cube size from 100 to 10, 50, and 500.

 WORKSHEET

Changing the cube’s scale affected its C: Size.

 14

certification1_2.dba

REM ***

RemStart

 *** TITLE - Program Structure

 *** VERSION - 1.2 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM SET VARIABLES

REM SCREEN DISPLAY

cls 0 : center text 320,240,"HIT ANY KEY TO BEGIN"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 15

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0 : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100  Here is where you will change the cube’s size.

REM LOAD MODELS

REM SET CAMERA

position camera 0,100,-250

point camera 0,0,0

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1aY# = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Leftkey()=1 then 1aY# = wrapvalue(1aY#-5)

 if Rightkey()=1 then 1aY# = wrapvalue(1aY#+5)

 if Inkey$()="q"

 delete object 1 : backdrop off : goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY#

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 16

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM SCREEN DISPLAY

cls 0 : center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 17

Basic Commands

Printing and Text

One of the first commands any programmer learns is to print text to the screen. This may seem quite

simple, and it is, but it is also the first method your program will have to communicate to the user.

Games need to communicate to the user to give scores, control or game options, or just to tell you that

you have died a horrible death at the hands of a smiling monster. Fortunately, the command to print text

to the screen is quite simple and easy to practice.

There are three ways to get text onto the screen:

1. The PRINT command will print text or the value of a variable on to the screen at the top right

(or 0,0) position.

2. A text command will allow you to print text at a defined position on the screen. In the picture

below, you will see the text “Your Score is” printed at a position of 320,240.

3. The third way is to create the text as part of the background or images that are shown in the game.

 VIDEO: Print and Text Using the CLI (2:13)

 WORKSHEET

Examples of two different commands you used with the CLI (Command Line Interface) to write text

onto the screen.

print “hello”

center text 320,240 “hello”

 Your Action:

Start the game engine and click on the CLI button at the

top right to activate the Command Line Interface. At

the bottom of the screen right below the line that begins

“>>> YOU CAN PRESS F12…” type the following:

print “hello”

Then press enter -- You should see hello appear in

the upper left corner of the screen.

On the next line type:

center text 320,240, “Your Score is”

Then press enter and you will see the text appear in the center of the screen. Your screen should look

like the picture shown here.

Now print your name onto the screen using both the PRINT and CENTER TEXT commands. What

happens when you change the numbers on center text 320,240 to 100,200 or 500,50?

 18

Now let’s work with some text inside a program.

 Your Action:

Load in certification1_2.dba and change the text for “HIT ANY KEY TO BEGIN” to have the program

tell you to hit any key. For example, if your name is Michael, have the program print, “MICHAEL, HIT

ANY KEY TO BEGIN”. You will find the text in the Intro Section Header under the line REM

SCREEN DISPLAY.

certification1_2.dba

REM ***

RemStart

 *** TITLE - Program Structure

 *** VERSION - 1.2 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM SET VARIABLES

REM SCREEN DISPLAY 

cls 0 : center text 320,240,"HIT ANY KEY TO BEGIN"

  Here is where you will change the text printed to the screen.

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

...

 19

There are other ways to have text appear on the screen. Professional game designers will use

backgrounds to make the screens seem more interesting.

 VIDEO: Using a Background (2:39)

 Your Action:

Load in certification1_3.dba. As you saw in the video, go under the REM SCREEN DISPLAY section

and change

useBackground = 0

to

useBackground = 1

Run the program to see the effect of having a background for your screen.

 20

certification1_3.dba

REM ***

RemStart

 *** TITLE - Print and Text Commands / Background Color and Images

 *** VERSION - 1.3 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam on

hide mouse

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM SET VARIABLES

REM SCREEN DISPLAY

cls rgb(0,0,0)

 RemStart

 Clear screen and set background color

 [rgb(0 to 255 for red, 0 to 255 for green, 0 to 255 for blue)]

 Default color is BLACK [0 or rgb(0,0,0)]

 or last set background color

 RemEnd

useBackground = 0  Change this variable from 0 to 1 to see the difference.

if useBackground = 1 then load bitmap "images/cubetitle.bmp"

if useBackground = 0

 ink rgb(255,255,255),rgb(0,150,0)

 RemStart

 Set text color [FOREGROUND, BACKGROUND]

 Default colors are WHITE FOREGROUND [rgb(0,0,0)]

 and BLACK BACKGROUND [0 or rgb(0,0,0)]

 or last set colors

 RemEnd

 set text font "arial" : Rem Set text font

 set text size 36 : Rem Set text size

 set text to bold : Rem Set text style

[normal,bold,italic,bolditalic]

 set text opaque : Rem Set text transparency [opaque,transparent]

 21

 Rem Print text centered at a specific location on screen

 center text 320,240," THE CUBE GAME "

 sync

 Rem Adjust text attributes

 set text font "times" : set text size 12

 set text to italic : set text transparent

 Rem Print text beginning at a specific location on screen

 text 320,276,"DEVELOPED BY JASON HOLM"

 sync

 set text font "times" : set text size 20

 set text to bold : set text transparent

 center text 320,300,"HIT ANY KEY TO BEGIN"

 sync

endif

set cursor 0,0

 RemStart

 Prepare to type in a specific place on screen [X,Y]

 Default cursor location is 0,0

 or the next line after the last printed line

 RemEnd

ink rgb(255,255,255),0

print "Copyright (c) Ingenious Student Labs"

 RemStart

 NOTE: The 'print' function does not utilize

 centering, font, size, style, background color or transparency

 RemEnd

sync

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 22

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0 : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100

REM LOAD MODELS

REM SET CAMERA

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1aY# = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 set text font "times" : set text size 16

 set text to bold : set text transparent

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Leftkey()=1 then 1aY# = wrapvalue(1aY#-5)

 if Rightkey()=1 then 1aY# = wrapvalue(1aY#+5)

 if Inkey$()="q"

 delete object 1 : backdrop off : goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY#

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 23

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM SCREEN DISPLAY

cls 0

set text font "times" : set text size 20

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 24

Do Loops

Loops are an important part of programming and

allow the program do many different things. There

are many different kinds of loops like Do, While, and

the For/Next. The first loop we will learn is the Do

Loop. You may have seen movies where a computer

gets into an “Infinite Loop” that then causes the

computer to lock up and then the world blows up – or

something like that. Well, a Do Loop will continue to

do the Do until you force it out of the loop.

 ANIMATION: Pit Stop

The Do Loop looks like this:

do

 List of things you want to happen while the loop is running

loop

Now let’s go look at Do Loops inside a program.

 VIDEO: Do Loops (4:20)

 WORKSHEET

A DO LOOP is used to A: Do a series of actions until a condition inside the loop causes the program to

move out of the loop.

 Your Action:

Load the certification1_4.dba program. Under the INTRO SECTION LOOP section, change

if Keystate(x)=1 then goto MainSection

to

REM if Keystate(x)=1 then goto MainSection

 25

certification1_4.dba

REM ***

RemStart

 *** TITLE - Do Loops

 *** VERSION - 1.4 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam on

hide mouse

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM SET VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

print "Copyright (c) Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 set cursor 0,40

 RemStart

 What happens if we REM the SET CURSOR command

 in a loop?

 RemEnd

 print "CUBES ARE FUN!"

 26

 REM CONTROL INPUT

 x=scancode()

 if Keystate(x)=1 then goto MainSection

  Add a REM command in front of this line to see the difference.

 RemStart

 Alternately, you could use

 if Keystate(x)=1 then exit

 This tells the program to exit this loop

 and continue to the next set of instructions

 RemEnd

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0 : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100

REM LOAD MODELS

REM SET CAMERA

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1aY# = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text transparent

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 set cursor 0,0

 RemStart

 What happens if we REM the SET CURSOR command

 in a loop that uses a backdrop?

 RemEnd

 print "CUBES ARE FUN!"

 27

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Leftkey()=1 then 1aY# = wrapvalue(1aY#-5)

 if Rightkey()=1 then 1aY# = wrapvalue(1aY#+5)

 if Inkey$()="q"

 delete object 1 : backdrop off : goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY#

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 28

Debugging

When programmers find a problem or fault in their program, they generally refer to it as a "bug".

Programmers have many different tricks they use to help find where the bug is in the program. One of

the most common tricks is one using the print statement. A cleverly placed print command can tell the

programmer what part of the code is executing.

 VIDEO: Print Statement Trick and Debugging (4:06)

First Debugging

Now watch the following video and take some notes, because you are about to fix a program that has a

mistake in it.

 VIDEO: Problem with the Program (4:55)

 WORKSHEET

A set cursor 0,50 would have the text placed A: On the left edge of the screen and 50 pixels down from

the top.

 Your Action:

Load in certification1_5.dba and fix the repeating print problem in the end Do Loop.

 29

certification1_5.dba

REM ***

RemStart

 *** TITLE - Debugging Program Loops

 *** VERSION - 1.4 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam on

hide mouse

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM SET VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

print "Copyright (c) Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 set cursor 0,40  This line resets the position where the text will print.

 RemStart

 What happens if we REM the SET CURSOR command

 in a loop?

 RemEnd

 print "The Introduction Loop"

 REM CONTROL INPUT

 x=scancode()

 if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

 30

REM *** END INTRO SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0 : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100

REM LOAD MODELS

REM SET CAMERA

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1aY# = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text transparent

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 set cursor 0,0

 print "The Main Loop runs till the Q key is pressed"

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Leftkey()=1 then 1aY# = wrapvalue(1aY#-5)

 if Rightkey()=1 then 1aY# = wrapvalue(1aY#+5)

 if Inkey$()="q"

 delete object 1 : backdrop off : goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY#

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 31

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM SCREEN DISPLAY

  Enter set cursor 0,40 here to fix the looping bug.

 print "End Loop waiting for the Y or N key"

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 32

Certification Module II
Variables, Math, For/Next Loops, If/Then Statements

 33

Certification II Worksheet
Teacher’s Version

Variables

Match the variable with the type of data it can hold.

 Playerdata Real Number

 Playerdata$ Integer

 Playerdata# Text

 (found in Variables video)

Math

Using the CLI, have the computer print the answers for the following equations.

 2+3*4-1 13 1*2*3*4 24

 (2+3)*4-1 19 (1*2)*3*4 24

 (2+3)*(4-1) 15 1*(2*3)*4 24

 2-10/2+6 -9 (1*2)*(3*4) 24

 2-10/(2+6) 1 3/5 0

 (2-10)/2+6 2 5/8 0

 (2-10)/(2+6) -1

Random Numbers are important for programmers because they can be used to help characters in

a program to act B .
 (found in certification text)

A. The same each time they are encountered

B. Unpredictably

C. Only once and then stop

 34

Certification II Worksheet
Teacher’s Version

Using the CLI, fill in the numbers generated by the RND() command below for an upper limits of

100 and 20.

Using RND(100) Using RND(20)

__________ __________

__________ __________

__________ __________

__________ __________

__________ __________

(these will be random)

Looking at the numbers above, do you see any trends or repeat numbers?

 Probably not – to see any trend, you must have thousands of numbers generated

 and a lot of time to look for the trend!

What is the “word” you can use to remember the mathematical operator precedence?

 PEMDAS (found in certification text)

List the Mathematical Operators in order of precedence:

()

^

*

/

+

-

(found in certification text)

 35

Certification II Worksheet
Teacher’s Version

List 3 examples of a Real Number:

(anything with a decimal)

List 3 examples of an integer:

(any whole number)

What is the command for creating a random number between 0 and 640?

 rnd(640)

 (found in certification text and Using Randomly Generated Numbers video)

The command for generating your name onto the screen randomly is:

 text rnd(640),rnd(480) ,”your name”

 (found in certification text and Using Randomly Generated Numbers video)

For what reason should you use a FOR/NEXT Loop?

A FOR/NEXT Loop should be used when you want to do some action or a series of actions

an exact number of times. (found in certification text)

Write a FOR/NEXT loop that will print “hello” onto the screen 12 times.

 for x = 1 to 12

 print “hello” (found in certification text)

 next x

 36

Certification II Worksheet
Teacher’s Version

Write an IF/THEN that will go to the MainSection if the variable Score is equal to 100 or prints

“Waiting” in the center of the screen if Score is any other value.

 if Score = 100 then goto MainSection

 center text 320,240 ,“Waiting”

 endif

 (found in certification text)

What are the Logical Operators for the following?

 = Equal to

 <> Not Equal to (found in certification text)

 < Less than

 > Greater than

 <= Less than or Equal to

 >= Greater than or Equal to

In the following IF/THEN statement, the bolded part is called the

 condition .
(found in certification text)

 If x > 3 then goto End

 Y=y+5

 endif

 37

Variables

Variables are symbols into which data can be stored. They are called

variables because the data they represent can be varied and changed.

Variables offer programmers the advantage of have a place to store

information that is unknown at the time of creating the program.

Think of a variable as a place to store some bit of unknown

information. Say you are writing a game program. In your game, you

have the player sign in with their name and at the end of the game you

want to display their name and score for them. But at the time of writing the game, you don’t know who

will be playing; you don’t know what their name is, let alone what score they might get. So, you use a

variable called Player$ to hold the name they type in (text information) when they start and a variable

called Playerscore to hold the points they earn (number value) while playing your game (by slewing

dragons, grinding a lip, or having the fastest lap). At the end of the game, you can print to the center of

the screen their name and score by simply printing the variables you stored the info in.

Center Text 320,240 ,Player$+“ ”+Playerscore

(this will print the player’s name with 2 spaces and then their score)

There are a couple of things to remember when creating variables:

1. There are restricted words and characters that cannot be used as variables. Print, Set, Text,

Hide, >, =, 1,20 are some examples of restricted words and characters you cannot use as the

variable name. Why? Because these words, numbers and characters already mean something else

in the programming language.

2. Be specific with your variable names. A variable name B1 is very vague, but a variable name

like Player$, or Playerscore makes it obvious what information is being held by the variable.

 ANIMATION: Chocolate Milk Variables

 VIDEO: Variables (6:07)

 WORKSHEET

Match the variable with the type of data it can hold.

Playerdata  Integer

Playerdata$  Text

Playerdata#  Real Number

 Your Action:

Load in certification2_1.dba. Change the value of AuthorName$ to your own name and run the program

to see the effect of your change.

 38

certification2_1.dba

REM ***

RemStart

 *** TITLE - Variables

 *** VERSION - 2.1 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam on

hide mouse

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM SET VARIABLES

GameTitle$ = "THE CUBE GAME" : Rem Set the game title as STRING

VARIABLE GameTitle$

 Change the value of this variable to see its effect in the game

AuthorName$ = "JASON HOLM" : Rem Set the game author's name as STRING

VARIABLE AuthorName$

CopyrightDate = 2000 : Rem Set the copyright date as INTEGER VARIABLE

CopyrightDate

CompanyName$ = "Ingenious Student Labs" : Rem Set the company name as

STRING VARIABLE CompanyName$

DIM GameCredit$(2) : Rem Define the STRING ARRAY GameCredit$() with

TWO openings

GameCredit$(1) = GameTitle$: Rem Put GameTitle$ into GameCredit$

opening (1)

GameCredit$(2) = AuthorName$: Rem Put AuthorName$ into GameCredit$

opening (2)

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),rgb(0,150,0) : set text font "arial" : set text

size 36 : set text to bold : set text opaque

center text 320,240," "+GameTitle$+" "

 RemStart

 Alternately, you could use

 center text 320,240," "+GameCredit$(1)+" "

 RemEnd

 39

ink rgb(255,255,255),0 : set text font "times" : set text size 12 :

set text to italic : set text transparent

text 320,276,"DEVELOPED BY "+AuthorName$  Here is where the variable will be used

 RemStart

 Alternately, you could use

 center text 320,276," "+GameCredit$(2)+" "

 RemEnd

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,300,"HIT ANY KEY TO BEGIN"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) "+str$(CopyrightDate)+"

"+CompanyName$

 RemStart

 This demonstrates how to include different types of variables in a

text statement

 RemEnd

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0 : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100

REM LOAD MODELS

REM SET CAMERA

REM REFRESH SCREEN

sync

 40

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1) : Rem Store the X position of Object 1

as a REAL NUMBER VARIABLE

 1pZ# = object position Z(1) : Rem Store the Z position of Object 1

as a REAL NUMBER VARIABLE

 1aY = object angle Y(1) : Rem Store the Y angle of Object 1 as an

INTEGER VARIABLE

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text transparent

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 set cursor 0,0 : print "X position: " ; 1pX# ; " | " ; object

position X(1) : Rem Print the X position of Object 1

 set cursor 0,20 : print "Z position: " ; 1pZ# ; " | " ; object

position Z(1) : Rem Print the Z position of Object 1

 set cursor 0,60 : print "Y angle: " ; 1aY ; " | " ; object angle

Y(1) : Rem Print the Y angle of Object 1

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Leftkey()=1 then 1aY = wrapvalue(1aY-5)

 if Rightkey()=1 then 1aY = wrapvalue(1aY+5)

 if Inkey$()="q"

 delete object 1 : backdrop off : goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 41

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 42

Math

Operands or Operators are the characters the programmer uses to tell the computer what type of

mathematical operation they want done.

The order in which you do the math matters. Computers follow some simple rules to keep the order

straight for a calculation. PEMDAS is a word you can remember -- it stands for:

Parentheses

Exponents

Multiplication

Division

Addition

Subtraction

-- which is the order the computer will do the parts of an equation. If you don’t think order matters, look

at the following equations and you can see the difference.

A. (2*3)-4 = 2

B. 2*3-4 = 2

C. 2*(3-4) = -2

Computation order is important!

All of these equations are correct. It is just the difference in the order in which the calculation is done

that matters. A and B are the same because multiplication comes before subtraction (PEMDAS), but

notice the difference in C. Since the parentheses are calculated before multiplication (PEMDAS), the

answer is dramatically different.

 WORKSHEET

What is the "word" you can use to remember the mathematical operator precedence? PEMDAS

In the equation X=1+2*3, for example, 2 will be

multiplied by 3 first. After the calculation of 2*3, the

result, 6, is then added to 1; the variable X would be set

to 7. If we modify our equation to X=(1+2)*3, the

operation inside the parentheses will be calculated first.

The result, 3, will then be multiplied by 3 to give a final

value for X of 9.

 WORKSHEET

List the Mathematical Operators in order of precedence:

() , ^ , * , / , + , -





Table of Mathematical Precedence

Operator Description
Precedence in

Calculations

() Parenthesis 1

^ Exponentiation 2

* Multiplication 3

/ Division 4

+ Addition 5

- Subtraction 6

 43

 VIDEO: Equations in Code (2:50)

 Your Action:

Use the CLI in Dark Basic to calculate the answers for the list of

equations on the worksheet.

Example – into the CLI type:

Print 6/3-2

Hit enter and the answer will appear at the top of the screen. Repeat this process for the equations on the

Certification II Worksheet.

 WORKSHEET

Match the variable with the type of data it can hold.

2+3*4-1 = 13 1*2*3*4 = 24

(2+3)*4-1 = 19 (1*2)*3*4 = 24

(2+3)*(4-1) = 15 1*(2*3)*4 = 24

2-10/2+6 = -9 (1*2)*(3*4) = 24

2-10/(2+6) = 1 3/5 = 0

(2-10)/2+6 = 2 5/8 = 0

(2-10)/(2+6) = -1

Note: all the answers are coming back as integers and not real numbers.

Real numbers are all numbers that can be expressed as decimals. Real numbers correspond to every

point on the number line and include all rational and irrational numbers. Integers are whole numbers,

positive or negative, including zero.

Why do programs sometimes use integers and sometimes real numbers? Basically, programmers will

use integers (whole numbers) for For/Next loops and use real numbers (floating point) for precise

calculations. Also, speed can be an issue; it takes a computer three times longer to calculate with real

numbers than with integers.

 WORKSHEET

List 3 examples of a Real Number: 1.5, 0.7, 29.073 (anything with a decimal)

List 3 examples of an integer: 2, 17, 483 (any whole number)

 44

Random Numbers

Good game programmers try to give the “characters” or bad guys in

their games some unpredictability. Say the monsters in a game always

turned left when you shot at them, well that would just make it too

easy to win, and you would probably consider the monsters too stupid.

Quickly you would become bored with the game and probably would

not buy another game from that company. One of the uses of random

numbers is to give characters a little unpredictability with some

artificial intelligence. You can generate a random number, and

depending on whether it is odd or even, your monster will turn left or

right when dodging a round from a Quantum Plasma Six Shooter.

 WORKSHEET

Random Numbers are important for programmers because they can be used to help characters in a

program to act B: unpredictably.

You would think creating random numbers for a computer would be easy, but it is actually one of the

hardest things to do. Computer scientist are trying all the time to get a computer to create truly random

numbers, but computers can get close to truly random. But for some basic gaming, the random numbers

the computer generates are close enough.

 VIDEO: Generating Random Numbers (1:55)

 WORKSHEET

What is the command for creating a random number between 0 and 640? rnd(640)

Using the CLI, fill in the numbers generated by the RND() command below for an upper limits of 100

and 20. (these will be random)

Using RND(100) : 3, 24, 75, etc.

Using RND(20) : 5, 12, 19, etc.

Looking at the numbers above, do you see any trends or repeat numbers?

Probably not -- to see any trend, you must have thousands of numbers generated and a lot of time to

look for the trend!

To see how you can replace a value with a random number generator, watch the following video:

 VIDEO: Using Randomly Generated Numbers (2:36)

 WORKSHEET

The command for generating your name onto the screen randomly is:

text rnd(640),rnd(480) ,"your name"

 45

 Your Action:

Load in certification1_2.dba. Edit the DO LOOP in the Introduction section to print your name

randomly around the screen using a text command.

certification1_2.dba

...

REM *** INTRO SECTION LOOP

do

  Insert text rnd(640),rnd(480) ,"your name" here to see the effect

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

...

 VIDEO: Variables and Random Numbers (3:22)

 Your Action:

Load in and run certification 2_2.dba. You will see the random numbers appear on the screen.

 46

certification2_2.dba

REM ***

RemStart

 *** TITLE - Math and Random Rumbers

 *** VERSION - 2.2 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam on

hide mouse

randomize timer() : Rem Generate different random numbers each time

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 Here is where the random numbers are generated

 randomX = rnd(640) : Rem Set a random variable based on a screen

width

 randomY = rnd(480) : Rem Set a random variable based on a screen

height

 ink rgb(255,0,0),0 : set text font "times" : set text size 12 :

set text to bold : set text transparent

 text randomX,randomY,"X: "+str$(randomX)+" , Y: "+str$(randomY)

 Here is where the random numbers are used to print to the screen

 47

 Rem Print a phrase in a random place on the screen, and its

coordinates

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

MyDistance = 0

REM SCREEN DISPLAY

cls 0 : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100

REM LOAD MODELS

REM SET CAMERA

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pZ# = object position Z(1)

 1aY = object angle Y(1)

 ClockHeading = 1aY/30 : Rem Divide the Y angle of Object 1 by 30

and store as an INTEGER VARIABLE (1 to 12)

 If ClockHeading = 0 then ClockHeading = 12 : Rem There is no 0

o'clock, so adjust accordingly

 REM CAMERA ORIENTATIONS

 48

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text transparent

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 set cursor 0,0 : print "X position: " ; 1pX#

 set cursor 0,20 : print "Z position: " ;1pZ#

 set cursor 0,60 : print "Y angle: " ; 1aY

 set cursor 0,80 : print "Clock Heading: " ; ClockHeading ; "

o'clock" : Rem Print the clock heading

 set cursor 0,100 : print "I have traveled " ; MyDistance ; "

spaces so far" : Rem Print how far you've moved

 REM CONTROL INPUT

 if Upkey()=1

 move object 1,10

 MyDistance = MyDistance + 10

 endif

 if Leftkey()=1 then 1aY = wrapvalue(1aY-5)

 RemStart

 The function 'wrapvalue' will convert a variable to an angle

from 0 to 360

 For example: wrapvalue(320+90) would equal 50

 (a 410 degree angle would still point 50 degrees from start)

 RemEnd

 if Rightkey()=1 then 1aY = wrapvalue(1aY+5)

 if Inkey$()="q"

 delete object 1 : backdrop off : goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 49

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 50

FOR/NEXT Loops

If you want the program to do an action for a certain number

of times, the For/Next Loop is the perfect tool. An example of

a FOR/NEXT loop is a car race.

 ANIMATION: Race Car Laps

The race lasts for only a certain number of laps (loops) and

then the race is over.

The FOR/NEXT loop can be told how many laps it will take, and on each lap it will do the list of tasks

set for it. Take a look at the following example:

For x = 1 to 10

 List of tasks or actions

Next x

This loop will execute 10 times and then stop. The computer looks at it this way:

X=1

Next X

X=2

Next X

X=3

Next X

X=4….

When X gets to 10, the For/Next Loop condition of X=1 to 10 is satisfied, the loop simply stops, and the

program moves to the next command below the loop.

 WORKSHEET

For what reason should you use a FOR/NEXT Loop?

A FOR/NEXT Loop should be used when you want to do some action or a series of actions an exact

number of times.

 VIDEO: Inserting a FOR/NEXT Loop (2:21)

 51

 Your Action:

Load in certification 1_2.dba and create your own FOR/NEXT loop.

Right under the REM *** INTRO SECTION LOOP, type the following:

For x=1 to 10

 print x

 next x

Now run the program and you will see the loop will print the numbers 1 through 10 for you. Now, go

back and change the loop so it will run 15 times.

certification1_2.dba

...

REM *** INTRO SECTION LOOP

 Insert

 For x=1 to 10

 print x

 next x

here to see the effect

do

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

...

 WORKSHEET

Write a FOR/NEXT loop that will print "hello" onto the screen 12 times.

for x = 1 to 12

 print "hello"

next x

Let’s go look at how a FOR/NEXT Loop is used to make an object grow and shrink while a game is

running.

 Your Action:

Load in and run certification2_3.dba. Notice how the Cube is pulsing – that is being done by a

FOR/NEXT Loop.

To see how that is done, watch this video:

 VIDEO: FOR/NEXT Loops in a Game (3:20)

 52

certification2_3.dba

REM ***

RemStart

 *** TITLE - For/Next Loop

 *** VERSION - 2.3 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam on

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

sync

REM LOAD SOUNDS

REM SPECIAL EFFECTS

for x = 1 to 10 : Rem Do the following action ten times

 randomX = rnd(640)

 randomY = rnd(480)

 ink rgb(255,0,0),0 : set text font "times" : set text size 12 :

set text to bold : set text transparent

 text randomX,randomY,"X: "+str$(randomX)+" , Y: "+str$(randomY)

next x : Rem Each time you get here, go back and do the action again

until x = 10

REM REFRESH SCREEN

sync

 53

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

MyDistance = 0

REM SCREEN DISPLAY

cls : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100

REM LOAD MODELS

REM SET CAMERA

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 for pulse = 0 to 5 : Rem Do the following action five times

 The variable pulse is defined by this for statement

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pZ# = object position Z(1)

 1aY = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size

16 : set text to bold : set text transparent

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 set cursor 0,0 : print "X position: " ; 1pX#

 set cursor 0,20 : print "Z position: " ; 1pZ#

 set cursor 0,60 : print "Y angle: " ; 1aY

 54

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Leftkey()=1 then 1aY = wrapvalue(1aY-5)

 if Rightkey()=1 then 1aY = wrapvalue(1aY+5)

 if Inkey$()="q"

 delete object 1 : backdrop off : goto EndSection

 endif

 REM TRANSFORM OBJECTS

 Rem Make Object 1 pulse by growing and contracting

 size = (pulse*2)+100

  The variable size changes based on the variable pulse

 RemStart

 The variable 'size' takes the variable 'pulse'

 (which increases by 1 each time it gets here, and resets

every five times)

 multiplies that number by two (giving us 2,4,6,8, or 10)

 and adding 100 to that number (giving us 102,104,106,108, or

110)

 RemEnd

 scale object 1,size,size,size

 The cube changes size based on the variable size

 RemStart

 This function takes the variable 'size' and scales object 1

to fit that size,

 Making the cube a little bigger each time.

 After five times, the cube shrinks back to the first size

(102)

 and repeats the process again.

 This makes the cube appear to pulse

 RemEnd

 REM MOVE OBJECTS

 Yrotate object 1,1aY

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

 The variable pulse is incremented by this next statement

 next pulse : Rem Each time you get here, go back and do the action

again until x = 5

loop

REM *** STOP MAIN SECTION

REM ***

 55

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 56

IF/THEN Statements

For a program to be able to be a game, it has to make many decisions - quickly - based on internal data,

external data (online games) or inputs from the game players. One of the most popular decision tools

programmers have is the IF/THEN statement. An IF/THEN is easily described as “IF this is true THEN

do this”. The IF part is set up as a condition. Something like IF X = 2, or IF X > 0, or IF NAME$ =

“TOM”. For the first example, if X was indeed equal to 2 then the condition is said to be true. The IF

statement would then move on to the THEN part. But if the IF statement was false, the program skips

the THEN part and continues to the next line of code.

 WORKSHEET

In the following IF/THEN statement, the bolded part is called the condition.

 if x > 3 then goto End

There are two ways you can use an IF/THEN statement:

First, the IF/THEN can be used as a single line of code to make a simple decision.

IF X = 3 THEN print x

or

IF X = 3 THEN print x : print y : z = x + y

Second, the IF/THEN can be used to make a decision and then run multiple lines of code.

IF X = 3

 print x

 print y

 z = x + y

ENDIF

If the condition (x=3) is TRUE, then all the actions between the IF statement and the ENDIF statement

will be executed. The statement THEN is not written, but all the code between the IF and the ENDIF is

still referred to the THEN part.

 ANIMATION: Stoplight

In the animation of the stoplight, the car was behaving using

the following IF/THEN:

IF Light = Green

 Drive Forward

ENDIF

IF Light = Red

 Stop Driving

ENDIF

IF/THEN is a command that looks at a condition (example Light = Green). If the condition is TRUE,

then the IF goes to the THEN part. If the condition is FALSE, the IF skips the THEN and ENDIF parts,

and continues to the next line of code below it.

 57

However, there is another way of making an either/or condition:

IF Light = Green

 Drive Forward

ELSE

 Stop Driving

ENDIF

If the condition is TRUE, then the IF goes to and runs the THEN part (in this case, the Drive Forward

action), stopping if it reaches an ELSE or an ENDIF statement.

If the condition is FALSE, the IF skips the THEN part and searches for an ELSE statement. If it finds an

ELSE statement, it runs the code between the ELSE and the ENDIF (in this case, the Stop Driving

action).

If the condition is FALSE, but there is no ELSE statement, the IF simply jumps to the ENDIF and

continues with the program.

Therefore, the IF/THEN can be used as a branched decision:

IF score > 1000

 goto Level2

ELSE

 Y = Inkey()

 Score = Y + X

ENDIF

 WORKSHEET

Write an IF/THEN that will go to the MainSection if the variable Score is equal to 100 or prints

"Waiting" in the center of the screen if Score is any other value.

 if Score = 100

 goto MainSection

 else

 center text 320,240 ,“Waiting”

 endif

 58

Logical Operators

IF/THENs look at the logic of the condition. Just like there are Mathematical Operators you use with

equations, there are Logical Operators you use with the IF/THEN.

Logical Operators

= Equal to

<> Not Equal to

< Less Than

> Greater Than

<= Less Than or Equal to

>=
Greater Than or Equal

to

 WORKSHEET

What are the Logical Operators for the following?

 = Equal to

 <> Not Equal to

 < Less than

 > Greater than

 <= Less than or Equal to

 >= Greater than or Equal to

The Logical Operators are what defines the relationship inside a condition. For Example:

X = 1 If the value of x is 1, then this condition is TRUE

Larry > 3
If the value of Larry is greater than 3 then this

condition is TRUE

Score <= 1000
If the value of Score is less than or equal to 1000 then

this condition is TRUE



 59

 VIDEO: IF/THEN Loops in a Game (4:29)

 Your Action:

Load in certification2_4.dba and examine where the IF/THEN loops are located.

 VIDEO: Inserting IF/THEN Loops (4:13)

 Your Action:

Go back into certification2_4.dba and add an IF/THEN state to stop the game if the Cube gets too far

along the X axis.

First thing is to find out the name of the variable that keeps the X axis position information. You will

find that in the top part of the Main Loop – See below.

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

We see that 1pX# is the variable for the x position.

Now that we know this, we can write our IF/THEN statement. In the THEN part of our statement, we

need to shut down the game's 3D world. To do that we will delete the object and turn off the background

before we go to the end loop. See below.

 if 1pX# > 200 then delete object 1 : backdrop off : goto EndSection

Take the IF/THEN above and insert it into certification2_4.dba game right before the end of the Main

Loop (just above the loop command). Run the game and see what happens when the X value gets to 200.

Afterwards you can go back and change 200 in the condition to something larger or smaller.

 60

certification2_4.dba

REM ***

RemStart

 *** TITLE - If/Then Statements

 *** VERSION - 2.4 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam on

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode()

 if Keystate(x)=1 then goto MainSection : Rem If the player hits

any key, then start the game  IF/THEN Statement

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 61

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls : backdrop on

REM LOAD TEXTURES

REM LOAD SOUNDS

REM OBJECT CREATION

make object cube 1,100

REM LOAD MODELS

REM SET CAMERA

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)  Player Cube’s X Position

 1pZ# = object position Z(1)

 1aY = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text transparent

 center text 320,420,"USE ARROW KEYS TO MOVE | PRESS SPACE BAR

TO CHANGE COLOR"

 center text 320,440,"PRESS 'Q' TO QUIT"

 set cursor 0,0 : print "X position: " ; 1pX#

 set cursor 0,20 : print "Z position: " ; 1pZ#

 set cursor 0,60 : print "Y angle: " ; 1aY

 IF Statement

 if 1pZ# > 500 : Rem If Object 1 gets too far away from the viewer

 center text 320,100,"COME BACK! YOU'RE TOO FAR AWAY!" : Rem

Then print a message on screen

 endif : Rem Continue the program  ENDIF Statement

 62

 REM CONTROL INPUT

 IF/THEN Statement

 if Upkey()=1 then move object 1,10 : Rem If the player hits the

'UP' arrow key, then move forward 10 units

  IF/THEN Statement

 if Downkey()=1 then move object 1,-10 : Rem If the player hits the

'DOWN' arrow key, then move backward 10 units

  IF/THEN Statement

 if Leftkey()=1 then 1aY = wrapvalue(1aY-5) : Rem If the player

hits the 'LEFT' arrow key, then turn left 5 units

  IF/THEN Statement

 if Rightkey()=1 then 1aY = wrapvalue(1aY+5) : Rem If the player

hits the 'RIGHT' arrow key, then turn right 5 units

  IF Statement

 if Spacekey()=1 : Rem If the user hits the space bar

 red=rnd(255) : Rem Set the variable 'red' as a random number

between 0 and 255

 green=rnd(255) : Rem Set the variable 'green' as a random

number between 0 and 255

 blue=rnd(255) : Rem Set the variable 'blue' as a random number

between 0 and 255

 color object 1,rgb(red,green,blue) : Rem Change the cube to a

random color

 endif  ENDIF Statement

  IF/THEN Statement

 if Inkey$()="q" : Rem If the player hits the 'q' key

 delete object 1 : backdrop off : goto EndSection : Rem Then

clear the 3D world and go to the end screen

 endif : Rem Continue the program  ENDIF Statement

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

insert if 1pX# > 200 then delete object 1 : backdrop off : goto EndSection

loop

REM *** STOP MAIN SECTION

REM ***

 63

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

  IF/THEN Statement

 if Inkey$()="y" then goto MainSection : Rem If the player hits the

'y' key, then start the game again

  IF Statement

 if Inkey$()="n" : Rem If the player hits the 'n' key

 cls : end : Rem Then clear the screen and end the program

 endif : Rem Continue the program  ENDIF Statement

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 64

Certification Module III
2D and 3D Game Worlds, Objects, and Cameras

 65

Certification III Worksheet
Teacher’s Version

Load in certification3_2.dba and run it. Sketch the object and each axis and carefully title the

X,Y,Z axes in the certification3_2.dba game.

Match the X, Y, and Z axes with the cube’s surface:

 Front and back Z

 Left and right X

 Top and bottom Y

(found in certification3_1-demo.dba)

What are two advantages of programming a game in 3D?

- You can view from any direction

- More realistic, allowing player to move around in the world

(found in certification text)

What are two advantages of programming a game in 2D?

- Easier and faster for computer to process; better for slower/older computers

- Easier to play; players don’t get lost so easily

(found in certification text)

What are three basic characteristics an object can have?

Shape, size, color, position, texture

(found in Objects video)

Z

Y

X

 66

Certification III Worksheet
Teacher’s Version

If you were creating a game about skate boarding, name 5 objects you would want to create to

use.

 Up to the student, but one object should be the skater!

When you make an object you must give it a unique number so it will not become

confused with any other object. (found in Objects video)

What is the command for making an object?

 Make object cube 1,100

(found in certification text and Objects video)

What is the command for coloring an object?

 Color object #,rgb(0,0,0)

(found in certification text and Objects video)

Use the table below to experiment with position and direction in the 3D world. Using the

certification3_2demo.dba file, move the ship to the positions shown below and then describe the

position and direction relative to the origin.

Position Table

Axis Position Facing

Y Angle

Description of the Position and Direction

relative to the origin X Y Z

100 150 300 180
The ship is right, back and above the origin.

The ship is facing toward the player.

-100 -45 -100 225

The ship is left, forward, and below the origin.

The ship is facing towards the player and

slightly to the left.

100 100 -100 90
The ship is right, forward, and above the

origin. The ship is facing right.

-150 -225 240 270
The ship is left, back, and below the origin.

The ship is facing left.

(found through experimenting with certification3_2demo.dba)

 67

Certification III Worksheet
Teacher’s Version

What is the command for loading in a pre-made model to be used in a game?

 Load object “walk.x”,1

(found in certification text and Animated Objects video)

The following color combinations give you what color?

 (0,0,0) black

 (255,255,255) white

What combination of colors will give you purple?

(255 , 0 , 255)
(found through experimenting with the CLI)

What is the big challenge of creating a walking object?

 Making sure the action is smooth. A walk animation is looped. If the loop/animation

doesn’t begin and end exactly the same way, you will notice the character jerking every

step.

(found in Animated Objects video)

 68

Certification III Worksheet
Teacher’s Version

List the 5 objects found in certification3_3.dba, along with their object ID number and color.

Object Object ID Number Object Color

Cube 1 255,0,0 (Red)

Cylinder 3 255,0,0 (Red)

Cylinder 4 0,255,0 (Green)

Cylinder 5 0,0,255 (Blue)

Cube 6 0,0,255 (Blue)

(found in code of certification3_3.dba in the Main Header section)

FOLLOW ME = 1 is the command to have the camera do what?

 Tells the camera to follow object 1

(found in Cameras in a Game video)

If you wanted to position a camera high above and look down at the center of the 3D world, how

would you complete the following code?

 POSITION CAMERA 0,1500,0

 POINT CAMERA 0,0,0

 (found in Cameras in a Game video)

 69

2D and 3D Game Worlds

What is the difference between 2D and 3D Game Worlds?

Video game developers use 2-dimensional (2D) and 3-dimensional (3D)

ways to display data to the player. Both are viewed on a 2D screen -- the

monitor. The difference is how the data of the game (character positions,

objects, etc.) is stored. Typically, 2D games store all of the data in pre-

made image files. In 3D games, you display 3D images generated from

information (3D data) stored about the object (vertices, polygons,

textures, scale, etc).

A 3D game will let you see a 3D object from virtually any angle, but

this takes quite a bit of mathematical computation. A 2D game can show you an object from different

angles, but each “View Angle” requires another pre-drawn 2D image of the object as seen by this angle.

Depending on the quality the game designer wants, a 2D game displaying as if it is a 3D game might

require 8-18 different 2D images for each object.

So, the big difference between 2D and 3D is how the data is stored. 3D stores 3D data on the points that

make up the 3D object. 2D games store a pre-drawn 2D image of the object.

Advantages of 3D

3D is very flexible and allows the game designer to give the player the opportunity to move about and to

view the 3D world from every angle. 3D allows the programmer to create animated objects that can be

viewed from any angle. It is easy to create new objects in 3D and to store them efficiently by storing the

vertices (corners), points and textures that make up the object.

 WORKSHEET

What are two advantages of programming a game in 3D?

You can view from any direction

More realistic, allowing player to move around in the world

Advantages of 2D

Currently, 2D does have some advantages over 3D. 2D displays quicker than 3D and therefore 2D

games may work on older and slower computers more easily than a 3D game. Some players struggle

with playing games in 3D space and become confused or lost in the 3D worlds.

 WORKSHEET

What are two advantages of programming a game in 2D?

Easier and faster for computer to process; better for slower/older computers

Easier to play; players don’t get lost so easily

 70

Objects

Objects are any 3D elements in your game. An object takes up space

in your 3D game world and it has a number of other attributes. Some

basic attributes are:

 Size

 Color

 Texture

 Shape or Model

 Collision Radius

 VIDEO: Objects (1:18)

 WORKSHEET

What are three basic characteristics an object can have?

Shape, size, color, position, texture

If you were creating a game about skate boarding, name 5 objects you would want to create to use.

Up to the student, but one object should be the skater!

When you make an object you must give it a unique number so it will not become confused with any

other object.

What is the command for making an object?

make object cube 1,100

What is the command for coloring an object?

color object #,rgb(0,0,0)

3D objects can be shaped by changing their scale along one of their axes. In a 3D world, all points have

a position in 3D space determined by 3 axes X,Y,Z (see the connection – 3D world – 3 axes). An

object’s position is not only determined by X,Y,Z, but the object’s size can be scaled differently along

each axis.

 Your Action:

Load and run certification3_1.dba. Drive the block around. Notice how the position and direction of the

box changes. Use the space bar to change the color of the box.

 71

certification3_1.dba

REM ***

RemStart

 *** TITLE - 3D Objects

 *** VERSION - 3.1 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 72

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

backdrop on

REM OBJECT CREATION

make object cube 1,100 : Rem Make Object 1 a cube, 100 units in size

 rem Make object CUBE Object Number, Size Value

 rem Make object BOX Object Number, Width, Height, Depth

 rem Make object CYLINDER Object Number, Size Value

 rem Make object CONE Object Number, Size Value

 rem Make object PLAIN Object Number, Width Value, Height Value

 rem Make object TRIANGLE Object Number, X1, Y1, Z1, X2, Y2, Z2,

X3, Y3, Z3

 color object 1,rgb(255,0,0) : Rem Color Object 1 Red

 Rem Resize Object 1

 scale object 1, 100,50,200

 remStart

 The object is scaled

 100% along the X axis

 50% along the Y axis

 200% along the Z axis

 To find the new size, calculate the percentage of the

original (100 units)

 remEnd

 position object 1,50,0,50 : Rem Put Object 1 at a specific place

in the world

 rotate object 1,0,45,0 : Rem Rotate Object 1 a specific amount

REM LOAD MODELS

REM SET CAMERA

position camera -20,100,-300

point camera 0,50,0

REM REFRESH SCREEN

sync

 73

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pZ# = object position Z(1)

 1aY = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text transparent

 center text 320,420,"USE ARROW KEYS TO MOVE | PRESS SPACE BAR

TO CHANGE COLOR"

 center text 320,440,"PRESS 'Q' TO QUIT"

 set cursor 0,0

 print "OBJECT 1:"

 print " X position: " ; 1pX#

 print " Z position: " ; 1pZ#

 print

 print " Y angle: " ; 1aY

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Downkey()=1 then move object 1,-10

 if Leftkey()=1 then 1aY = wrapvalue(1aY-5)

 if Rightkey()=1 then 1aY = wrapvalue(1aY+5)

 if Inkey$()="q"

 delete object 1 : Rem Delete Object 1 from the game field

 backdrop off

 goto EndSection

 endif

 red=rnd(255) : green=rnd(255) : blue=rnd(255)

 if Spacekey()=1 then color object 1,rgb(red,green,blue)

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 74

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 75

To use an object, you must first create the object in your 3D game world. The command's format is:

 MAKE OBJECT TYPE #,SIZE

Each object you make must have its own unique ID number (#). When you work with objects, it is a

good idea to make a list somewhere of the object and its number.

Here are some examples of object construction or MAKE commands:

 MAKE OBJECT CUBE 1,100

 MAKE OBJECT CONE 2,50

 MAKE OBJECT CYLINDER 3,75

You may want to use something other than the geometric objects above, like an alien or tank. To do this,

you will load in a pre-made model from a library of models that have been created for the game. In the

game industry, there are people who do nothing but create the objects that others use when creating

games. Here is an example of how to bring in a pre-made model from a library.

 LOAD OBJECT "models/walk.x",1

Objects can also have colors. To set the color of an object, you use the COLOR OBJECT command. It’s

format is:

 COLOR OBJECT #,RGB(###,###,###)

RGB stands for Red, Green and Blue. It is the combination of these three colors that creates the color of

the object. Each color has a range of 0-255. For example, if you want an object to be red, then you could

simply use the combination (255,0,0). Blue is (0,0,255).

COLOR OBJECT 1,rgb(120,120,0) will make OBJECT 1 dark yellow in color.

 Your Action:

Use the CLI to make a CUBE, CONE and CYLINDER. Between each, use a CLS command to clear the

screen. Don’t worry that it may seem that you are too close to the object. Later you will learn about

cameras and views and what to do about that.

 MAKE OBJECT CUBE 1,100

 MAKE OBJECT CONE 2,50

 MAKE OBJECT CYLINDER 3,75

 MAKE OBJECT SPHERE 4,75

Now go and color one of these objects. Make a new object with a new number, and then use the

OBJECT COLOR command to change the objects color a few times.

 WORKSHEET

The following color combinations give you what color?

 (0,0,0) black

(255,255,255) white

What combination of colors will give you purple?

(255 , 0 , 255)

 76

Objects can also be scaled along their axes.

 Your Action:

Load and run certification3_1-demo.dba. Give the object a different size along each axis. As you move

the object around with the arrow keys, you will notice that the object has a front. Notice the different

axes relate to the object's top and bottom, left and right, and front and back. Change the scale values for

each of the axes and see what effect it has.

 WORKSHEET

Match the X, Y, and Z axes with the cube’s surface:

Front and back: Z

Left and right: X

Top and bottom: Y

 77

certification3_1-demo.dba

REM ***

RemStart

 *** TITLE - Scaling Objects

 *** VERSION - 3.1 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

1pX# = 50

1pZ# = 50

1aY = 0

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

 78

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

backdrop off

REM OBJECT CREATION

make object cube 1,200

 position object 1,1pX#,0,1pZ#

 rotate object 1, 0,1aY,0

make object cylinder 3, 100 : Rem Make Object 3 a cylinder marking

the X axis

 color object 3,rgb(255,0,0)

 scale object 3, 5,1000,5

 position object 3, 1pX#,0,1pZ#

 set object rotation zyx 3

 rotate object 3, 1aY,0,90

make object cylinder 4, 100 : Rem Make Object 4 a cylinder marking

the Y axis

 color object 4,rgb(0,255,0)

 scale object 4, 5,1000,5

 position object 4, 1pX#,0,1pZ#

 rotate object 4, 0,1ay,0

make object cylinder 5, 100 : Rem Make Object 5 a cylinder marking

the Z axis

 color object 5,rgb(0,0,255)

 scale object 5, 5,1000,5

 position object 5, 1pX#,0,1pZ#

 set object rotation zyx 3

 rotate object 5, 90,180,1aY

REM LOAD MODELS

REM SET CAMERA

position camera -20,200,-500

point camera 0,50,0

REM REFRESH SCREEN

sync

REM *** INPUT SECTION

ink rgb(255,255,255),0 : print "The cube is currently 200 units high

by 200 units wide by 200 units deep."

do

 if scancode()=0 then exit

 sync

loop

 79

ink rgb(255,0,0),0 : input "Increase/Decrease X by (percent):

";1percentX#

ink rgb(0,255,0),0 : input "Increase/Decrease Y by (percent):

";1percentY#

ink rgb(0,0,255),0 : input "Increase/Decrease Z by (percent):

";1percentZ#

do

 if scancode()=0 then exit

 sync

loop

1dX# = (1percentX# / 100) * object size x(1)

1dY# = (1percentY# / 100) * object size y(1)

1dZ# = (1percentZ# / 100) * object size z(1)

scale object 1, 1percentX#,1percentY#,1percentZ#

backdrop on

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pZ# = object position Z(1)

 1aY = object angle Y(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text transparent

 center text 320,420,"USE ARROW KEYS TO MOVE | PRESS SPACE BAR

TO CHANGE COLOR"

 center text 320,440,"PRESS 'R' TO RESIZE | PRESS 'Q' TO QUIT"

 set cursor 0,0

 print "OBJECT 1:"

 ink rgb(255,0,0),0 : print " X position: " ; 1pX#

 ink rgb(0,0,255),0 : print " Z position: " ; 1pZ#

 print

 ink rgb(0,255,0),0 : print " Y angle: " ; 1aY

 print

 ink rgb(255,255,255),0 : print "DIMENSIONS:"

 ink rgb(255,0,0),0 : print " Original X: ";object size x(1)

 print " Scale X Percentage: ";1percentX#

 print " Scaled X: ";1dX#

 print

 ink rgb(0,255,0),0 : print " Original Y: ";object size y(1)

 print " Scale Y Percentage: ";1percentY#

 print " Scaled Y: ";1dY#

 print

 ink rgb(0,0,255),0 : print " Original Z: ";object size z(1)

 print " Scale Z Percentage: ";1percentZ#

 print " Scaled Z: ";1dZ#

 80

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Downkey()=1 then move object 1,-10

 if Leftkey()=1 then 1aY = wrapvalue(1aY-5)

 if Rightkey()=1 then 1aY = wrapvalue(1aY+5)

 if Inkey$()="q"

 delete object 1 : Rem Delete Object 1 from the game field

 for x = 3 to 5

 delete object x

 next x

 backdrop off

 1pX# = 50

 1pZ# = 50

 1aY = 0

 goto EndSection

 endif

 if Inkey$()="r"

 delete object 1 : Rem Delete Object 1 from the game field

 for x = 3 to 5

 delete object x

 next x

 backdrop off

 goto MainSection

 endif

 red=rnd(255) : green=rnd(255) : blue=rnd(255)

 if Spacekey()=1 then color object 1,rgb(red,green,blue)

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Yrotate object 1,1aY

 Xrotate object 3,1aY

 Yrotate object 4,1aY

 Zrotate object 5,1aY

 for x = 3 to 5

 position object x,1pX#,0,1pZ#

 next x

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 81

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 82

The 3D World

You have seen how 3D objects take up 3D space and how you

can change the size of the objects by manipulating the object’s

scale along one of its 3 axes (x, y, z). Now let’s look at how

object’s position and movement is defined in the 3D world. All

positions and motions are described as relative to the origin of

the 3D world. The point whose values are 0,0,0 is called the

origin.

The X,Y,Z value of the point and whether the values are

negative or positive shows you the position of the point relative

to the origin.

 WORKSHEET

Load in certification3_2.dba and run it. Sketch the object and each axis and carefully title the X,Y,Z

axes in the certification3_2.dba game.

 83

certification3_2.dba

REM ***

RemStart

 *** TITLE - 3D Space

 *** VERSION - 3.2 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 84

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

backdrop on : Rem Create the 3D world's background

color backdrop rgb(50,0,50) : Rem Change the Backdrop color

REM OBJECT CREATION

make object cube 1, 50

 color object 1,rgb(255,0,0)

 1dX# = 50 : Rem The X size you want the Object to become

 1dY# = 120 : Rem The Y size you want the Object to become

 1dZ# = 30 : Rem The Z size you want the Object to become

 scale object 1, (1dX# / object size x(1))*100,(1dY# / object size

y(1))*100,(1dZ# / object size z(1))*100

 remStart

 Since the default size of this cube is 50 in each direction, this

function becomes

 scale object 1, (50 / 50) * 100, (120 / 50) * 100, (30 / 50) *

100

 scale object 1, (1) * 100, (2.4) * 100, (.6) * 100

 scale object 1, 100,240,60

 remEnd

 position object 1, 0,0,0 : Rem Place Object 1 at a specific place

in the world

 rotate object 1,0,350,0 : Rem Rotate Object 1 a specific amount

make object plain 2, 300,200 : Rem Make Object 2 a flat plane

 rotate object 2, 90,0,0

make object cylinder 3, 100 : Rem Make Object 3 a cylinder marking

the X axis

 color object 3,rgb(255,0,0)

 scale object 3, 5,1000,5

 position object 3, 0,0,0

 rotate object 3, 0,0,90

make object cylinder 4, 100 : Rem Make Object 4 a cylinder marking

the Y axis

 color object 4,rgb(0,255,0)

 scale object 4, 5,1000,5

 position object 4, 0,0,0

 rotate object 4, 0,90,0

make object cylinder 5, 100 : Rem Make Object 5 a cylinder marking

the Z axis

 color object 5,rgb(0,0,255)

 scale object 5, 5,5000,5

 position object 5, 0,0,0

 rotate object 5, 90,0,0

REM LOAD MODELS

 85

REM SET CAMERA

position camera -20,100,-300

point camera 0,50,0

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pY# = object position Y(1)

 1pZ# = object position Z(1)

 1aX = object angle X(1)

 1aY = object angle Y(1)

 1aZ = object angle Z(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text opaque

 center text 320,420,"USE ARROW KEYS TO MOVE | PRESS 'V' TO

FLOAT UP AND 'B' TO SINK DOWN"

 center text 320,440,"PRESS 'Q' TO QUIT"

 Rem Print Object Dimensions

 set cursor 0,0

 ink rgb(255,255,255),0 : print "OBJECT 1"

 ink rgb(255,0,0),0 : print "X dimension: ";1dX#

 ink rgb(0,255,0),0 : print "Y dimension: ";1dY#

 ink rgb(0,0,255),0 : print "Z dimension: ";1dZ#

 print

 Rem Print Object position

 ink rgb(255,0,0),0 : print "X position: ";1pX#

 ink rgb(0,255,0),0 : print "Y position: ";1pY#

 ink rgb(0,0,255),0 : print "Z position: ";1pZ#

 print

 Rem Print Object angles

 ink rgb(255,0,0),0 : print "X angle: ";1aX

 ink rgb(0,255,0),0 : print "Y angle: ";1aY

 ink rgb(0,0,255),0 : print "Z angle: ";1aZ

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,5

 if Downkey()=1 then move object 1,-5

 if Leftkey()=1 then Yrotate object 1,wrapvalue(1aY-5)

 if Rightkey()=1 then Yrotate object 1,wrapvalue(1aY+5)

 if Inkey$()="v" then 1pY# = 1pY# + 5 : Rem If the user hits the

'v' key, then move Object 1 up 5 units

 if Inkey$()="b" then 1pY# = 1pY# - 5 : Rem If the user hits the

'b' key, then move Object 1 down 5 units

 86

 if Inkey$()="q"

 for x = 1 to 100

 if object exist(x) = 1

 delete object x

 endif

 next x

 backdrop off : Rem Remove the 3D world's background

 goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Rem Store the new positions of Object 1

 1pX# = object position X(1)

 1pZ# = object position Z(1)

 position object 1,1pX#,1pY#,1pZ# : Rem Reposition Object 1

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 87

 Your Action:

Load and run certification3_2-demo.dba. Move the space ship around and note the change in the X,Y, Z

values. Does the X value change as the space ship moves away from the screen? What value changes to

a negative as the ship descends below the origin point?

 WORKSHEET

Use the table below to experiment with position and direction in the 3D world. Using the

certification3_2demo.dba file, move the ship to the positions shown below and then describe the

position and direction relative to the origin.

x=100 | y=150 | z=300 | y angle=180

The ship is right, back and above the origin. The ship is facing toward the player.

x=100 | y=-45 | z=-100 | y angle: 225

The ship is left, forward, and below the origin. The ship is facing towards the player and slightly to the left.

x=100 | y=100 | z=-100 | y angle: 90

The ship is right, forward, and above the origin. The ship is facing right.

x=-150 | y=-225 | z=240 | y angle: 270

The ship is left, back, and below the origin. The ship is facing left.

 88

certification3_2-demo.dba

REM ***

RemStart

 *** TITLE - 3D Spaceship

 *** VERSION - 3.2 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 89

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

backdrop on : Rem Create the 3D world's background

color backdrop rgb(50,0,50) : Rem Change the Backdrop color

REM OBJECT CREATION

make object plain 2, 300,200 : Rem Make Object 2 a flat plane

 rotate object 2, 90,0,0

make object cylinder 3, 100 : Rem Make Object 3 a cylinder marking

the X axis

 color object 3,rgb(255,0,0)

 position object 3, 0,0,0

 scale object 3, 5,1000,5

 rotate object 3, 0,0,90

make object cylinder 4, 100 : Rem Make Object 4 a cylinder marking

the Y axis

 color object 4,rgb(0,255,0)

 position object 4, 0,0,0

 scale object 4, 5,1000,5

 rotate object 4, 0,90,0

make object cylinder 5, 100 : Rem Make Object 5 a cylinder marking

the Z axis

 color object 5,rgb(0,0,255)

 position object 5, 0,0,0

 scale object 5, 5,5000,5

 rotate object 5, 90,0,0

REM LOAD MODELS

load object "models/spcveh20.x",1

 Yrotate Object 1,180

 fix object pivot 1

 Rem Resize Object 8

 1dY = 70

 1scale# = (1dY / object size y(1))*100

 scale object 1, 1scale#, 1scale#, 1scale#

 1dX# = (1scale# / 100) * object size x(1)

 1dY# = (1scale# / 100) * object size y(1)

 1dZ# = (1scale# / 100) * object size z(1)

 position object 1,0,1dY#/2,0

 rotate object 1,0,0,0

REM SET CAMERA

position camera -20,100,-300

point camera 0,50,0

REM REFRESH SCREEN

sync

 90

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pY# = object position Y(1)

 1pZ# = object position Z(1)

 1aX = object angle X(1)

 1aY = object angle Y(1)

 1aZ = object angle Z(1)

 REM CAMERA ORIENTATIONS

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text opaque

 center text 320,420,"USE ARROW KEYS TO MOVE | PRESS 'V' TO

FLOAT UP AND 'B' TO SINK DOWN"

 center text 320,440,"PRESS 'Q' TO QUIT"

 Rem Print Object Dimensions

 set cursor 0,0

 ink rgb(255,255,255),0 : print "OBJECT 1"

 ink rgb(255,0,0),0 : print "X dimension: ";1dX#

 ink rgb(0,255,0),0 : print "Y dimension: ";1dY#

 ink rgb(0,0,255),0 : print "Z dimension: ";1dZ#

 print

 Rem Print Object position

 ink rgb(255,0,0),0 : print "X position: ";1pX#

 ink rgb(0,255,0),0 : print "Y position: ";1pY#

 ink rgb(0,0,255),0 : print "Z position: ";1pZ#

 Rem Print Object angles

 print

 ink rgb(255,0,0),0 : print "X angle: ";1aX

 ink rgb(0,255,0),0 : print "Y angle: ";1aY

 ink rgb(0,0,255),0 : print "Z angle: ";1aZ

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Downkey()=1 then move object 1,-10

 if Leftkey()=1 then 1aY = wrapvalue(1aY-5)

 if Rightkey()=1 then 1aY = wrapvalue(1aY+5)

 if Inkey$()="v" then 1pY# = 1pY# + 5 : Rem If the user hits the

'v' key, then move Object 1 up 5 units

 if Inkey$()="b" then 1pY# = 1pY# - 5 : Rem If the user hits the

'b' key, then move Object 1 down 5 units

 if Inkey$()="q"

 for x = 1 to 5

 delete object x : Rem Then delete Objects 1 to 5 from the

game field

 next x

 backdrop off : Rem Then remove the 3D world's background

 goto EndSection

 endif

 91

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 Rem Store the new positions of Object 1

 1pX# = object position X(1)

 1pZ# = object position Z(1)

 Yrotate object 1,1aY

 position object 1,1pX#,1pY#,1pZ# : Rem Reposition Object 1

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 92

Animated Objects

To make a game more interesting, you will want some of your objects to

have motion as they move...possibly to simulate walking, flying

(propeller turning), or swinging a samurai sword. The way game

programmers create the impression of action is with animated

characters. Typically in the game world, if you wanted to create a skate

boarder character, then you would create an animated model that would

have the skater in a number of different positions and attitudes. As the

player hit the correct inputs to create a jump, ollie or a grind, then the

program would simply switch and display that short animation model.

Let’s look at a simple animated model, of a goblin that is walking. Because we are working in a 3D

game environment, you can view the animated model from any direction (the model was created in 3D).

But the action (animation) is only of walking.

 VIDEO: Animated Objects (3:16)

 Your Action:

Load and run certification3_walk.dba. Observe how the object moves.

 WORKSHEET

What is the command for loading in a pre-made model to be used in a game?

load object “walk.x”,1

What is the big challenge of creating a walking object?

Making sure the action is smooth. A walk animation is looped. If the loop/animation doesn’t begin and

end exactly the same way, you will notice the character jerking every step.

 93

certification3_walk.dba

Rem * Title : Managing Models

Rem * Author : DBS-LB

Rem * Date : 1st Sept 99

rem ==

rem DARK BASIC EXAMPLE PROGRAM 2

rem ==

rem This program manages your models features

rem --

rem Load a bitmap and grab image

load bitmap "images/floor1.bmp",1

get image 1,0,0,128,128

delete bitmap 1

rem Load your object

load object "models/walk.x",1

rem Rotate and fix data so character faces right way

xrotate object 1,0

yrotate object 1,180

zrotate object 1,0

fix object pivot 1

rem Immediately hide the object

hide object 1

rem Position your object 100 units into the distance

position object 1,0,0,100

rem Rotate your object to face an angle of 45 degrees

rotate object 1,0,45,0

rem Scale your object to double its width and depth, but not height

scale object 1,200,100,200

rem Texture your entire object using the cloth image grabbed and

stored in image 1

texture object 1,1

rem Color the object

color object 1,rgb(0,255,0)

rem Ghost your object to make it semi-transparent

ghost object on 1

rem Fade object to 25 percent intensity

fade object 1,25

rem Animate your object (loop to frame 25 and back to 5)

loop object 1,5,25

 94

rem Show the object

show object 1

rem Lock and unlock the object

lock object on 1

lock object off 1

rem Reverse rotation

set object rotation xyz 1

rem Begin main loop

sync on

draw to front

while mouseclick()=0

rem Show FPS

set cursor 0,0

print screen fps()

rem Control the object movement with the cursor keys

if upkey()=1 then move object 1,1.0

if downkey()=1 then move object 1,-1.0

rem Control the object rotation with the cursor keys

angle#=object angle y(1)

if leftkey()=1 then angle#=wrapvalue(angle#-2)

if rightkey()=1 then angle#=wrapvalue(angle#+2)

yrotate object 1,angle#

rem Use the spacebar to point your object to the center of the world

if spacekey()=1 then point object 1,0,0,0

rem Synchronize

sync

rem Set rotation order back to normal

set object rotation zyx 1

rem End main loop

endwhile

draw to back

rem Stop your object from animating

stop object 1

rem Switch off ghosting

ghost object off 1

rem Free your object from memory

delete object 1

rem End the program

end

 95

The challenge of creating animated models

Did you notice how the walking action looped or repeated itself every few steps? This is the challenge of

creating animations for action games. For things like walking or running, you need to create an

animation where the end and the beginning are exactly the same. The next time you play a game, watch

to see how the characters walk or run. What you are seeing is the same small one-step animation

repeated hundreds of times (maybe thousands) to make it look like one long walk or run.

Multiple objects

The one thing you must not forget about using multiple objects is the need for a unique ID for each

object. In games you will have objects that are part of the background. They may be random or grouped

together (forest of trees, rocks in a desert, clouds in the sky); you might choose to use a loop to

randomly generate and distribute the objects. Basically, a game with one or two objects is much easier to

create than a game with hundreds or thousands.

 VIDEO: Multiple Objects (4:19)

 Your Action:

Load in certification3_3.dba. Look at the multiple objects in the code, then run the program and identify

the objects. Take note of the color of each of the cylinders and its ID number so you can tell which

object is which when you run the game.

 WORKSHEET

List the 5 objects in certification3_3.dba, along with their object ID number and color.

 Object Object ID Number Object Color

 Cube 1 255,0,0 (Red)

 Cylinder 3 255,0,0 (Red)

 Cylinder 4 0,255,0 (Green)

 Cylinder 5 0,0,255 (Blue)

 Cube 6 0,0,255 (Blue)

 96

certification3_3.dba

REM ***

RemStart

 *** TITLE - Multiple Objects

 *** VERSION - 3.3 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 97

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls

backdrop on

color backdrop rgb(50,0,50)

REM OBJECT CREATION  Objects are created in this section

make object cube 1, 70 : Rem Object 1 : The Red Cube

 color object 1,rgb(255,0,0)

 position object 1, 0,35,0

make object plain 2, 300,200 : Rem Object 2 : The Ground

 rotate object 2, 90,0,0

make object cylinder 3, 100 : Rem Object 3 : The X Axis

 color object 3,rgb(255,0,0)

 scale object 3, 5,1000,5

 position object 3, 0,0,0

 rotate object 3, 0,0,90

make object cylinder 4, 100 : Rem Object 4 : The Y Axis

 color object 4,rgb(0,255,0)

 scale object 4, 5,1000,5

 position object 4, 0,0,0

 rotate object 4, 0,90,0

make object cylinder 5, 100 : Rem Object 5 : The Z Axis

 color object 5,rgb(0,0,255)

 scale object 5, 5,5000,5

 position object 5, 0,0,0

 rotate object 5, 90,0,0

make object cube 6,70 : Rem Object 5 : The Blue Cube

 color object 6,rgb(0,0,255)

 position object 6, -150,35,150

NumberOfCones=20 : Rem Choose your number of cones

for x=10 to NumberOfCones+10 : Rem Create a series of random cones,

numbered Objects 10 to the number of cones plus 10

 make object cone x, rnd(100)+50 : Rem Make each cone a random

height from 50 to 150

 color object x,rgb(rnd(105)+150,rnd(105)+150,rnd(105)+150) : Rem

Make each cone a random color, but make sure the color is not too

dark

 98

 do

 NoCenterX = rnd(1500)-750 : Rem Make a random X coordinate,

from -750 to 750

 NoCenterZ = rnd(1500)-750 : Rem Make a random Z coordinate,

from -750 to 750

 if (NoCenterX > -150 and NoCenterX < 150 and NoCenterZ > -150

and NoCenterZ < 150) = 0 and NoCenterZ > 150

 Rem This checks to make sure the cones aren't created too close

to the cube's starting point (or behind the viewing area)

 exit

 Rem If they aren't, the program continues

 endif

 Rem If they are, they are sent back to choose a new random

location

 loop

 position object x, NoCenterX,object size(x)*.75,NoCenterZ

 remStart

 Place each cone at a random spot, but make sure they are all:

 1: Anywhere in a 1500 by 1500 unit square around the start

point

 2: Not in the 300 by 300 square right in the middle

 3: In front of the camera

 4: Flat on the ground by taking its height, (which is one and

one-half the diameter)

 multiplying it by 3/4 (.75), and raising it that amount

 remEnd

next x : Rem Create the next cone

 magic_cone = rnd(NumberOfCones)+11 : Rem Randomly declare one of

the cones a 'magic' cone

REM LOAD MODELS

REM SET CAMERA

position camera -20,100,-300

point camera 0,50,0

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 for pulse = 0 to 5

 REM OBJECT ORIENTATIONS

 Rem Object 1 Variables

 1pX# = object position X(1)

 1pZ# = object position Z(1)

 1aY = object angle Y(1)

 Rem Object 6 Variables

 6pX# = object position X(6)

 6pZ# = object position Z(6)

 6aY = object angle Y(6)

 REM CAMERA ORIENTATIONS

 99

 REM LIVE SCREEN DISPLAY

 ink rgb(255,255,255),0 : set text font "times" : set text size 16

: set text to bold : set text opaque

 center text 320,420,"USE ARROW KEYS TO MOVE THE RED CUBE | USE

THE NUMBER PAD TO MOVE THE BLUE CUBE"

 center text 320,440,"PRESS 'Q' TO QUIT"

 REM CONTROL INPUT

 Rem Object 1 Controls

 if Upkey()=1 then move object 1,10

 if Downkey()=1 then move object 1,-10

 if Leftkey()=1 then Yrotate object 1,wrapvalue(1aY-5)

 if Rightkey()=1 then Yrotate object 1,wrapvalue(1aY+5)

 Rem Object 1 Controls

 if Inkey$()="8" then move object 6,10

 if Inkey$()="2" then move object 6,-10

 if Inkey$()="4" then Yrotate object 6,wrapvalue(6aY-5)

 if Inkey$()="6" then Yrotate object 6,wrapvalue(6aY+5)

 if Inkey$()="q"

 for x = 1 to 100

 if object exist(x) = 1 : Rem Check to see if each object

exists

 delete object x : Rem if it does, delete it from the game

field

 endif

 next x

 backdrop off

 goto EndSection

 endif

 REM TRANSFORM OBJECTS

 size = (pulse*20)+100 : Rem Make Objects pulse by growing and

contracting

 scale object magic_cone,size,size,size : Rem Make the 'magic' cone

pulse

 REM MOVE OBJECTS

 REM CHECK FOR COLLISION

 REM REFRESH SCREEN

 sync

 next pulse

loop

REM *** STOP MAIN SECTION

REM ***

 100

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 101

View / Camera

Cameras allow you to give the player a custom or unique view of the

game’s 3D world. You can have a camera focus from one spot, or the

camera can follow the action from within the cockpit of a space fighter

or just behind an extreme athlete. Camera views can allow the game

player to have a more realistic experience, allowing the gamer to

experience the game from the center of the action, or possibly a view

from on high looking down upon the peasants as they work the fields

owned by the Dark Knight.

Now let’s look at a couple ways cameras are used in a game:

 VIDEO: Cameras in a Game (4:32)

 Your Action:

Load in certification3_4.dba and change where cameras 1 and 2 point.

 WORKSHEET

FOLLOW ME = 1 is the variable used by the if/then statement to have the camera do what?

Tells the camera to follow object 1

If you wanted to position a camera high above and look down at the center of the 3D world, how would

you complete the following code?

POSITION CAMERA 0,1500,0

POINT CAMERA 0,0,0

 102

certification3_4.dba

REM ***

RemStart

 *** TITLE - Cameras

 *** VERSION - 3.4 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off : Rem Set autocamera options

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 103

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

backdrop on

color backdrop rgb(50,0,50)

REM OBJECT CREATION

make object cube 1, 100 : Rem Cube

 color object 1,rgb(255,0,0)

 position object 1, 0,50,0

make object plain 2, 300,300 : Rem Ground

 rotate object 2, 90,0,0

make object cylinder 3, 100 : Rem X axis

 color object 3,rgb(255,0,0)

 position object 3, 0,0,0

 scale object 3, 5,5000,5

 rotate object 3, 0,0,90

make object cylinder 4, 100 : Rem Y axis

 color object 4,rgb(0,255,0)

 position object 4, 0,0,0

 scale object 4, 5,5000,5

 rotate object 4, 0,90,0

make object cylinder 5, 100 : Rem Z axis

 color object 5,rgb(0,0,255)

 position object 5, 0,0,0

 scale object 5, 5,5000,5

 rotate object 5, 90,0,0

NumberOfCones=20 : NC = NumberOfCones + 10

for x=10 to NC : Rem Cones

 make object cone x, rnd(200)+50

 color object x,rgb(rnd(105)+150,rnd(105)+150,rnd(105)+150)

 do

 NoCenterX = rnd(2000)-1000

 NoCenterZ = rnd(2000)-1000

 if (NoCenterX > -150 and NoCenterX < 150 and NoCenterZ > -150

and NoCenterZ < 150) = 0 then exit

 loop

 position object x, NoCenterX,object size(x)*.75,NoCenterZ

next x

REM LOAD MODELS

REM SET CAMERA  Change Camera settings here

position camera -20,100,-300 : Rem Set camera position

point camera 0,50,0 : Rem Rotate camera to point at a specific place

REM REFRESH SCREEN

sync

 104

REM *** MAIN SECTION LOOP

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pY# = object position Y(1)

 1pZ# = object position Z(1)

 1aX = object angle X(1)

 1aY = object angle Y(1)

 1aZ = object angle Z(1)

 REM CAMERA ORIENTATIONS

 Rem Store the positions of the Camera as variables

 cpX# = camera position X()

 cpY# = camera position Y()

 cpZ# = camera position Z()

 Rem Store the angles of the Camera as variables

 caX# = camera angle X()

 caY# = camera angle Y()

 caZ# = camera angle Z()

 REM LIVE SCREEN DISPLAY

 ink 0,rgb(255,255,255) : set text font "times" : set text size 16

: set text to bold : set text opaque

 center text 320,420,"USE ARROW KEYS TO MOVE"

 center text 320,435,"PRESS [1] - [2] - [3] TO CHANGE CAMERA ANGLE"

 center text 320,450,"PRESS 'Q' TO QUIT"

 set cursor 0,0

 ink rgb(255,255,255),0 : print "OBJECT 1"

 Rem Print Object position

 ink rgb(255,0,0),0 : print "X position: ";1pX#

 ink rgb(0,255,0),0 : print "Y position: ";1pY#

 ink rgb(0,0,255),0 : print "Z position: ";1pZ#

 print

 Rem Print Object angles

 ink rgb(255,0,0),0 : print "X angle: ";1aX

 ink rgb(0,255,0),0 : print "Y angle: ";1aY

 ink rgb(0,0,255),0 : print "Z angle: ";1aZ

 Rem Print Camera positions

 set cursor 450,0 : ink rgb(255,255,255),0 : print "CAMERA"

 set cursor 450,16 : ink rgb(255,0,0),0 : print "Camera X position:

";cpX#

 set cursor 450,32 : ink rgb(0,255,0),0 : print "Camera Y position:

";cpY#

 set cursor 450,48 : ink rgb(0,0,255),0 : print "Camera Z position:

";cpZ#

 Rem Print Camera angles

 set cursor 450,80 : ink rgb(255,0,0),0 : print "Camera X angle:

";caX#

 set cursor 450,96 : ink rgb(0,255,0),0 : print "Camera Y angle:

";caY#

 105

 set cursor 450,112 : ink rgb(0,0,255),0 : print "Camera Z angle:

";caZ#

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,10

 if Downkey()=1 then move object 1,-10

 if Leftkey()=1 then Yrotate object 1,wrapvalue(1aY-5)

 if Rightkey()=1 then Yrotate object 1,wrapvalue(1aY+5)

 if Inkey$()="1"

 position camera -20,100,-300 : Rem Set camera position

 point camera 0,50,0 : Rem Rotate camera to point at a specific

place  Camera settings

 followMe = 0 : Rem Tell the program not to follow Object 1

 endif

 if Inkey$()="2"

 position camera 0,1500,0 : Rem Set camera position

 point camera 0,0,0 : Rem Rotate camera to point at a specific

place  Camera settings

 followMe = 0 : Rem Tell the program not to follow Object 1

 endif

 if Inkey$()="3"

 followMe = 1 : Rem Tell the program to follow Object 1

 endif

 if Inkey$()="q"

 for x = 1 to 100

 if object exist(x) = 1 then delete object x

 next x

 backdrop off

 goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 REM CHECK FOR COLLISION

 REM MOVE CAMERA

 if followMe = 1 : Rem If the camera is following Object 1

 cpZ# = Newzvalue(1pZ#,1aY-180,200) : Rem Calculate the camera's

new Z position

 cpX# = Newxvalue(1pX#,1aY-180,200) : Rem Calculate the camera's

new X position

 Position camera cpX#,200,cpZ# : Rem Set the camera placement

 Point camera 1pX#,1pY#+50,1pZ# : Rem Point camera at the top of

Object 1  Camera settings

 endif

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 106

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto MainSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 107

Certification Module IV
Input, Collision, Texture, Sound, Packing and Final EXE

 108

Certification IV Worksheet
Teacher’s Version

When you played the Jetski game, what inputs made the game work?

 UpArrow, LeftArrow, RightArrow (from jetski.dba)

What other controls might you have included for this game?

 Answer may include start game, reset or restart game, end game

What is a collision?

 A collision is when one object’s space invades another object’s space AND collision

detection has been turned on for BOTH objects.
(found in certification text)

What commands would turn on and off the collision detection for an object with an ID of 2?

 SET OBJECT COLLISION ON 2

 SET OBJECT COLLISION OFF 2
(found in Collisions video)

In the Collision game certification4_2.dba, when you turned off the collision for object 7, what

happened when the cube collided with the cone?

 The cube passed through the cone.
(found in Collisions video)

What is the type of image file that can be used as a texture?

 .bmp files only
(found in Textures video)

Why would you want to use textures?

 Textures can make an object look more realistic.
(found in certification text)

 109

Certification IV Worksheet
Teacher’s Version

Where do you find the pre-made models and their textures in Dark Basic?

 Under the menu selection MEDIA then under MEDIA BROWSER
(found in Texture Examples in Game Code video)

Describe a model that had more than one texture and the textures it used.

 Any number of models under the MEDIA MEDIA BROWSER use multiple textures. One

example is the Penguin that has 3 textures -- body, leg and eye.

What type of sound files can you use with this game engine?

 .wav and .mp3 files
(found in Sounds in Game Code video)

What is the command to load in a new sound?

 Load sound "sounds/scifi5.wav",1
(found in Sounds in Game Code video)

What command will play a sound once?

 Play sound 1
(found in Sounds in Game Code video)

What command will play a sound continuously?

 Loop sound 7
(found in Sounds in Game Code video)

What command do you use to set the volume of sound 7 to a level of 50?

 Set sound volume 7,50
(found in certification text)

What is the purpose of creating a final EXE?

 It allows you to distribute the game.
(found in Making a Final EXE video)

 110

Input - Human Touch

If you have ever played a video game and your player has died a

horrible death, or if you lost your top score because you couldn’t hit

the correct key fast enough, then you have seen the big problem with

interfacing the game to the human. We play games because they are

fun, and the fun comes from playing a game. Watching a game play

itself is probably only slightly less fun than watching snail races on a

small black and white TV with no commercials. As a game designer,

how you offer the player the chance to control the game is very

important. The commands which are used the most need to be easy to

perform. If you are designing a fast-action game, then you must make

sure that the average user (and needless to say – buyer) of your video

game will be able to control it.

 Your Action:

Under myproj/jetski find and load in jetski.dba. Run it and pay attention to the controls.

Notice how simple the controls are for the jetski game -- UP, RIGHT, and LEFT arrow keys.

 WORKSHEET

When you played the Jetski game, what inputs made the game work?

UpArrow, LeftArrow, RightArrow

What other controls might you have included for this game?

Answer may include start game, reset or restart game, end game

 VIDEO: Input from Humans (6:25)

 Your Action:

Load in certfication4_1.dba. Count the different inputs the game requires of the player and note what

they are used for.

 111

certification4_1.dba

REM ***

RemStart

 *** TITLE - Inputs

 *** VERSION - 4.1 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 Returns whatever key is being pressed right now (any key)

 x=scancode() : if Keystate(x)=1 then goto OptionsSection

  If the current key being pressed is x (any key), then this is true

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 112

REM ***

REM *** START OPTIONS SECTION

REM *** OPTIONS SECTION HEADER

OptionsSection:

REM DECLARE VARIABLES

 myInput$ = "Keyboard" : Rem Use the keyboard for input

 myName$ = "Anonymous" : Rem The default player name

REM SCREEN DISPLAY

cls 0

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** OPTIONS SECTION LOOP

do

 if scancode()=0 then exit

  If no key is currently being pressed (waits for the user to release all keys)

loop

do

 REM SCREEN DISPLAY

 cls 0

 ink rgb(255,255,255),0 : set text font "times" : set text size 20

: set text to bold : set text transparent

 center text 320,140,"OPTIONS:"

 ink rgb(255,0,0),0 : center text 320,180,"PRESS 'N' TO ENTER YOUR

NAME"

 center text 320,200,"NAME: "+myName$: Rem Display the name

 ink rgb(0,255,0),0 : center text 320,260,"PRESS 'K' TO USE ARROW

KEYS TO MOVE"

 center text 320,280,"PRESS 'M' TO USE MOUSE TO MOVE"

 center text 320,300,"PRESS 'B' TO USE BOTH KEYBOARD AND MOUSE TO

MOVE"

 center text 320,320,"INPUT: "+myInput$: Rem Display the input

type

 ink rgb(0,0,255),0 : center text 320,360,"PRESS SPACE BAR TO PLAY"

 113

 REM CONTROL INPUT

  If the “n” key is currently pressed

 if Inkey$()="n" : Rem If the player presses 'n'

 do

 if Inkey$() <> "n" then exit : Rem Wait until they let go of

'n'  Exit this loop when the “n” key is released

 loop

 ink rgb(255,0,0),0 : set cursor 200,220

  Gather the characters typed by the user and save them to a variable

 input "ENTER NEW NAME: ";myName$: Rem Wait for a response, then

record the response

 endif

 If the ”k” key is currently pressed

 if Inkey$()="k" then myInput$ = "Keyboard" : Rem If the player

hits 'k', change the variable myInput$ to "Keyboard"

  If the “m” key is currently pressed

 if Inkey$()="m" then myInput$ = "Mouse" : Rem If the player hits

'm', change the variable myInput$ to "Mouse"

  If the “b” key is currently pressed

 if Inkey$()="b" then myInput$ = "Both" : Rem If the player hits

'b', change the variable myInput$ to "Both"

  If the Space Bar is currently pressed

 if SpaceKey()=1 then goto MainSection : Rem If the player hits the

spacebar, continue on to game

 REM REFRESH SCREEN

 sync

loop

REM *** END OPTIONS SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

backdrop on

color backdrop 0

REM OBJECT CREATION

make object cube 1, 100 : Rem Cube

 color object 1,rgb(255,0,0)

 position object 1, 0,50,0

make object plain 2, 5000,5000 : Rem Ground

 color object 2,rgb(255,255,255)

 rotate object 2, 90,0,0

 114

make object cylinder 3, 100 : Rem X axis

 color object 3,rgb(255,0,0)

 position object 3, 0,0,0

 scale object 3, 5,5000,5

 rotate object 3, 0,0,90

make object cylinder 4, 100 : Rem Y axis

 color object 4,rgb(0,255,0)

 position object 4, 0,0,0

 scale object 4, 5,5000,5

 rotate object 4, 0,90,0

make object cylinder 5, 100 : Rem Z axis

 color object 5,rgb(0,0,255)

 position object 5, 0,0,0

 scale object 5, 5,5000,5

 rotate object 5, 90,0,0

NumberOfCones=20 : NC = NumberOfCones + 10

for x=10 to NC : Rem Cones

 make object cone x, rnd(200)+50

 color object x,rgb(rnd(105)+150,rnd(105)+150,rnd(105)+150)

 do

 NoCenterX = rnd(2000)-1000

 NoCenterZ = rnd(2000)-1000

 if (NoCenterX > -150 and NoCenterX < 150 and NoCenterZ > -150

and NoCenterZ < 150) = 0 then exit

 loop

 position object x, NoCenterX,object size(x)*.75,NoCenterZ

next x

REM LOAD MODELS

REM SET CAMERA

cpZ# = Newzvalue(object position Z(1),object angle Y(1)-180,250)

cpX# = Newxvalue(object position X(1),object angle Y(1)-180,250)

Position camera cpX#,150,cpZ#

Point camera object position X(1),object position Y(1)+50,object

position Z(1)

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 if scancode()=0 then exit

  If no key is currently being pressed (waits for the user to release all keys)

loop

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pY# = object position Y(1)

 1pZ# = object position Z(1)

 1aX# = object angle X(1)

 1aY# = object angle Y(1)

 1aZ# = object angle Z(1)

 115

 REM CAMERA ORIENTATIONS

 cpX# = camera position X()

 cpY# = camera position Y()

 cpZ# = camera position Z()

 caX# = camera angle X()

 caY# = camera angle Y()

 caZ# = camera angle Z()

 REM LIVE SCREEN DISPLAY

 ink 0,rgb(255,255,255) : set text font "times" : set text size 16

: set text to bold : set text opaque

 if myName$ <> "Anonymous"

 remStart

 Checks to make sure myName$ is not "Anonymous", and only prints

the greeting if it's not

 also acceptable (but clumsier):

 if (myName$ = "Anonymous") = 0

 remEnd

 center text 320,425,"'Greetings, "+myName$+"!'"

 endif

 set cursor 0,0

 ink rgb(255,255,255),0 : print "OBJECT 1"

 Rem Print Object position

 ink rgb(255,0,0),0 : print "X position: ";1pX#

 ink rgb(0,255,0),0 : print "Y position: ";1pY#

 ink rgb(0,0,255),0 : print "Z position: ";1pZ#

 print

 Rem Print Object angles

 ink rgb(255,0,0),0 : print "X angle: ";1aX#

 ink rgb(0,255,0),0 : print "Y angle: ";1aY#

 ink rgb(0,0,255),0 : print "Z angle: ";1aZ#

 Rem Print Camera positions

 set cursor 450,0 : ink rgb(255,255,255),0 : print "CAMERA"

 set cursor 450,16 : ink rgb(255,0,0),0 : print "Camera X position:

";cpX#

 set cursor 450,32 : ink rgb(0,255,0),0 : print "Camera Y position:

";cpY#

 set cursor 450,48 : ink rgb(0,0,255),0 : print "Camera Z position:

";cpZ#

 Rem Print Camera angles

 set cursor 450,80 : ink rgb(255,0,0),0 : print "Camera X angle:

";caX#

 set cursor 450,96 : ink rgb(0,255,0),0 : print "Camera Y angle:

";caY#

 set cursor 450,112 : ink rgb(0,0,255),0 : print "Camera Z angle:

";caZ#

 116

 REM CONTROL INPUT

 if myInput$ = "Keyboard" : Rem Using the Keyboard Commands

  Use these keys if “Keyboard” was selected

 ink 0,rgb(255,255,255) : set text font "times" : set text size

16 : set text to bold : set text opaque

 center text 320,440,"USE ARROW KEYS TO MOVE"

 center text 320,455,"PRESS SPACE BAR TO CHANGE COLOR |

PRESS 'Q' TO QUIT"

 if Upkey()=1 then move object 1,20

  If the Up Arrow Key is currently pressed

 if Downkey()=1 then move object 1,-20

  If the Down Arrow Key is currently pressed

 if Leftkey()=1 then Yrotate object 1,wrapvalue(1aY#-3.5)

  If the Left Arrow Key is currently pressed

 if Rightkey()=1 then Yrotate object 1,wrapvalue(1aY#+3.5)

  If the Right Arrow Key is currently pressed

 if Spacekey()=1 : Rem If the player hits the space bar

  If the Space Bar is currently pressed

 color object 1,rgb(rnd(255),rnd(255),rnd(255)) : Rem Then

change the color of Object 1

 endif

 endif

 if myInput$ = "Mouse" : Rem Using the Mouse Control

  Use these keys if “Mouse” was selected

 ink 0,rgb(255,255,255) : set text font "times" : set text size

16 : set text to bold : set text opaque

 center text 320,440,"USE MOUSE TO MOVE LEFT AND RIGHT | USE

BUTTONS TO MOVE BACK AND FORWARD"

 center text 320,455,"PRESS SPACE BAR TO CHANGE COLOR |

PRESS 'Q' TO QUIT"

 if mouseclick()=1 then move object 1,20

  If the Left Mouse Button is currently pressed

 if mouseclick()=2 then move object 1,-20

  If the Right Mouse Button is currently pressed

 remStart

 Alternatively, you could use the mouse movement to move the

object back and forward,

 (But it's a little clunky)

 Rem move object 1,0 - (MousemoveY() * 2)

  Mouse forward and backward movement

 In combination with mouseclick, this could be used for

scrollbars, click and drag, etc.

 remEnd

 Yrotate object 1,wrapvalue(1aY#+MousemoveX()*0.1)

 Mouse left and right movement

 117

 if Spacekey()=1 : Rem If the player hits the space bar

  If the Space Bar is currently pressed

 color object 1,rgb(rnd(255),rnd(255),rnd(255)) : Rem Then

change the color of Object 1

 endif

 endif

  Use these keys if “Both” was selected

 if myInput$ = "Both" : Rem Using Both the Keyboard and Mouse

Control

 ink 0,rgb(255,255,255) : set text font "times" : set text size

16 : set text to bold : set text opaque

 center text 320,440,"USE MOUSE TO MOVE LEFT AND RIGHT | USE

ARROW KEYS TO MOVE BACK AND FORWARD"

 center text 320,455,"CLICK LEFT MOUSE BUTTON TO CHANGE COLOR

| PRESS 'Q' TO QUIT"

 if Upkey()=1 then move object 1,20

  If the Up Arrow Key is currently pressed

 if Downkey()=1 then move object 1,-20

  If the Down Arrow Key is currently pressed

  If the Left Mouse Button is currently pressed

 if mouseclick()=1 then color object 1,

rgb(rnd(255),rnd(255),rnd(255))

 Yrotate object 1,wrapvalue(1aY#+MousemoveX()*0.1)

 Mouse left and right movement

 endif

 If the ”q” key is currently pressed

 if Inkey$()="q"

 for x = 1 to 100

 if object exist(x) = 1 then delete object x

 next x

 backdrop off

 goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 REM CHECK FOR COLLISION

 REM MOVE CAMERA

 cpZ# = Newzvalue(1pZ#,1aY#-180,250)

 cpX# = Newxvalue(1pX#,1aY#-180,250)

 Position camera cpX#,150,cpZ#

 Point camera 1pX#,1pY#+50,1pZ#

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 118

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 if scancode()=0 then exit

  If no key is currently being pressed (waits for the user to release all keys)

loop

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto OptionsSection

 If the ”y” key is currently pressed

 if Inkey$()="n"

 If the ”n” key is currently pressed

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 119

Collision

What’s a video game without some good bumping into things? Think

about it. How many games do you play where you collide with other

cars, ram into a tree, or simply bump into a bloodthirsty monster (who

proceeds to eat you)? In video games, these “bumps” are called

“collisions”. Collision detection can be one of the most complex parts

of developing a game. The reason is that the objects in the 3D game

don’t actually exist. So determining the exact boundaries of an object

and what is really a “collision” can be tough. Essentially, collision

detection is detecting when collision spaces touch. These spaces can be defined as the objects

themselves or as collision boxes in the game engine.

 VIDEO: Collisions (4:06)

 WORKSHEET

What is a collision?

A collision is when one object’s space invades another object’s space AND collision detection has been

turned on for BOTH objects.

What commands would turn on and off the collision detection for an object with an ID of 2?

SET OBJECT COLLISION ON 2

SET OBJECT COLLISION OFF 2

 Your Action:

Load in certfication4_2.dba and change the collision from on to off for object 6. If you are not sure how,

then go back and watch the Collisions video.

 WORKSHEET

In the Collision game certification4_2.dba, when you turned off the collision for object 7, what

happened when the cube collided with the cone?

The cube passed through the cone.

 120

certification4_2.dba

REM ***

RemStart

 *** TITLE - Collision

 *** VERSION - 4.2 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto OptionsSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 121

REM ***

REM *** START OPTIONS SECTION

REM *** OPTIONS SECTION HEADER

OptionsSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** OPTIONS SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END OPTIONS SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

energy1 = 0

energy6 = 0

REM SCREEN DISPLAY

cls 0

backdrop on

color backdrop 0

REM OBJECT CREATION

make object cube 1, 100 : Rem Cube

 color object 1,rgb(255,0,0)

 position object 1, 0,50,0

make object plain 2, 2000,2000 : Rem Ground

 color object 2,rgb(255,255,255)

 rotate object 2, 90,0,0

make object cylinder 3, 100 : Rem X axis

 color object 3,rgb(255,0,0)

 position object 3, 0,0,0

 scale object 3, 5,5000,5

 rotate object 3, 0,0,90

 122

make object cylinder 4, 100 : Rem Y axis

 color object 4,rgb(0,255,0)

 position object 4, 0,0,0

 scale object 4, 5,5000,5

 rotate object 4, 0,0,0

make object cylinder 5, 100 : Rem Z axis

 color object 5,rgb(0,0,255)

 position object 5, 0,0,0

 scale object 5, 5,5000,5

 rotate object 5, 90,0,0

make object cylinder 6, 200 : Rem Cylinder

 color object 6,rgb(0,255,255)

 position object 6, -300,100,500

make object cone 7, 200 : Rem Cone

 color object 7,rgb(255,0,255)

 position object 7, 300,object size(7)*.75,500

REM LOAD MODELS

REM SET COLLISIONS

set object collision on 1 : Rem Check the Player Cube

 make object collision box 1, -50,-50,-50, 50,50,50, 1

 Rem Starting at the lower left corner, we define a box around the

object to check for collision

set object collision off 2 : Rem Don't check the Plain

set object collision off 3 : Rem Don't check the X axis pole

set object collision off 4 : Rem Don't check the Y axis pole

set object collision off 5 : Rem Don't check the Z axis pole

    adjust the collision settings here

set object collision on 6 : Rem Check the left Cylinder

 make object collision box 6, -90,-90,-90, 90,90,90, 1

set object collision on 7 : Rem Check the right Cone

 make object collision box 7, -90,-90,-90, 90,90,90, 1

REM SET CAMERA

cpZ# = Newzvalue(object position Z(1),object angle Y(1)-180,250)

cpX# = Newxvalue(object position X(1),object angle Y(1)-180,250)

Position camera cpX#,150,cpZ#

Point camera object position X(1),object position Y(1)+50,object position Z(1)

REM REFRESH SCREEN

sync

REM *** MAIN SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pY# = object position Y(1)

 1pZ# = object position Z(1)

 1aX# = object angle X(1)

 1aY# = object angle Y(1)

 1aZ# = object angle Z(1)

 123

 REM CAMERA ORIENTATIONS

 cpX# = camera position X()

 cpY# = camera position Y()

 cpZ# = camera position Z()

 caX# = camera angle X()

 caY# = camera angle Y()

 caZ# = camera angle Z()

 REM LIVE SCREEN DISPLAY

 ink 0,rgb(255,255,255) : set text font "times" : set text size 16

: set text to bold : set text opaque

 center text 320,420,"TRANSFER ENERGY FROM THE PURPLE CONE TO THE

CYLINDER"

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 set cursor 0,0

 ink rgb(255,255,255),0 : print "OBJECT 1"

 Rem Print Object position

 ink rgb(255,0,0),0 : print "X position: ";1pX#

 ink rgb(0,255,0),0 : print "Y position: ";1pY#

 ink rgb(0,0,255),0 : print "Z position: ";1pZ#

 print

 Rem Print Object angles

 ink rgb(255,0,0),0 : print "X angle: ";1aX#

 ink rgb(0,255,0),0 : print "Y angle: ";1aY#

 ink rgb(0,0,255),0 : print "Z angle: ";1aZ#

 print

 Rem Print "Energy Levels"

 ink rgb(150,150,150),0

 print "MY ENERGY LEVEL: ";energy1

 print "CYLINDER ENERGY STORED: ";energy6

 print

 REM CONTROL INPUT

 if Upkey()=1 then move object 1,20

 if Downkey()=1 then move object 1,-20

 if Leftkey()=1 then Yrotate object 1,wrapvalue(1aY#-3.5)

 if Rightkey()=1 then Yrotate object 1,wrapvalue(1aY#+3.5)

 if Inkey$()="q"

 for x = 1 to 100

 if object exist(x) = 1 then delete object x

 next x

 backdrop off

 goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 REM CHECK FOR COLLISION

 1pXcol# = object position X(1) : Rem Now that we've moved, set new

collision variables

 1pZcol# = object position Z(1)

 124

 Rem Collision Type 1: Defined areas

 if 1pXcol#<-950 then 1pXcol#=-950 : Rem Make sure I'm not off

the edge of the plain

 if 1pZcol#<-950 then 1pZcol#=-950

 if 1pXcol#>950 then 1pXcol#=950

 if 1pZcol#>950 then 1pZcol#=950

 position object 1, 1pXcol#,1pY#,1pZcol# : Rem If I am, put me

back

 Rem Collision Type 2: Object collision

 if object collision(1,6) = 1 : Rem If Object 1 collides with

Object 6

 if energy1 > 0

 dec energy1

 inc energy6

 color object 6,

rgb(rnd(105)+150,rnd(105)+150,rnd(105)+150) : Rem Change the color of

the cone

 endif

 position object 1, 1pX#,1pY#,1pZ# : Rem Put Object 1 back

where it was

 endif

 if object collision(1,7) = 1 : Rem If Object 1 collides with

Object 7

 inc energy1

 color object 1,rgb(rnd(105)+150,rnd(105)+150,rnd(105)+150) :

Rem Change the color of the cube

 position object 1, 1pX#,1pY#,1pZ# : Rem Put Object 1 back

where it was

 endif

 Rem Reset Positions

 1pX# = 1pXcol# : Rem Now that we've checked for collision, reset

my variables

 1pZ# = 1pZcol#

 1aY# = object angle Y(1)

 REM MOVE CAMERA

 cpZ# = Newzvalue(1pZ#,1aY#-180,250)

 cpX# = Newxvalue(1pX#,1aY#-180,250)

 if cpX#<-999 then cpX#=-999 : Rem Make sure the camera is not off

the edge

 if cpZ#<-999 then cpZ#=-999

 if cpX#>999 then cpX#=999

 if cpZ#>999 then cpZ#=999

 Position camera cpX#,150,cpZ# : Rem If so, re-adjust

 Point camera 1pX#,1pY#+50,1pZ#

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 125

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto OptionsSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 126

Textures

Textures are images that are applied to objects. Textures are used to

give the objects in a game a realistic look. Basically, textures are used to

fool the eye into seeing 3D detail that doesn’t really exist. Think about a

brick wall. If you stand outside and look at a brick wall, your eyes see

the detail of how the bricks are stacked and mortared together. Because

of the way the light is hitting the brick surface, your eyes (and brain) process and recognize that the brick

surface isn’t smooth but is rough and uneven in “texture”. Now, take a picture of that wall you have been

looking at, run inside and apply that picture to an object in a game you want to look like a wall, and your

eye will see a surface that isn’t perfectly flat and smooth, but is rough, uneven and has texture. The objects

you create in the game engine are created as perfectly smooth 3-dimensional objects. It is the texture that

the game designer applies to that object that makes it look as real as a brick wall you might see outside.

There are people who make their living in the game industry who only make textures.

The other part of creating textures is that the size and shape are very important.

 WORKSHEET

Why would you want to use textures?

Textures can make an object look more realistic.

 VIDEO: Textures (3:10)

 WORKSHEET

What is the type of image file that can be used as a texture? .bmp files only

 Your Action:

Start up the Dark Basic editor and take a moment to look through the pre-made models and their textures

(.bmp files).

Now to find out how textures are applied to objects in the code watch the following video:

 VIDEO: Texture Examples in Game Code (3:36)

 WORKSHEET

Where do you find the pre-made models and their textures in Dark Basic?

Under the menu selection MEDIA then under MEDIA BROWSER

Describe a model that had more than one texture and the textures it used.

Any number of models under the MEDIA MEDIA BROWSER use multiple textures. One example is the

Penguin that has 3 textures -- body, leg and eye.

 Your Action:

Load in certification4_3.dba. First, look in the Main Section to see the different images/textures that are

being loaded. Then run the game and identify the different textures applied to the different objects.

 127

certification4_3.dba

REM ***

RemStart

 *** TITLE - Bitmaps and Image Textures

 *** VERSION - 4.3 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

load bitmap "images/cubetitle.bmp" : Rem load a still image & display

it

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto OptionsSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 128

REM ***

REM *** START OPTIONS SECTION

REM *** OPTIONS SECTION HEADER

OptionsSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** OPTIONS SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END OPTIONS SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

backdrop on

color backdrop 0

REM LOAD IMAGES  Textures are loaded here

Load image "images/clock.bmp",1 : Rem Import images and assign ids to

them

Load image "images/grassy01.bmp",2

Load image "images/rock12.bmp",3

Load image "images/rocky05.bmp",4

texture backdrop 4 : Rem Apply texture 4 to the backdrop

REM LOAD SOUNDS

 129

REM OBJECT CREATION Textures are applied as the objects are created

make object cube 1, 100 : Rem Cube

 Texture object 1,1 : Rem Apply texture 1 to the cube

 scale object 1,100,50,100

 position object 1, 0,25,0

make object plain 2, 2000,2000 : Rem Ground

 Texture object 2,2 : Rem Apply texture 2 to the ground

 scale object texture 2,20,20 : Rem Shrink the texture 20 times

each way so it tiles on the surface

 rotate object 2, 90,0,0

 position object 2, 0,0,0

NumberOfCones=90 : NC = NumberOfCones + 10

for x=10 to NC : Rem Cones

 make object cone x, rnd(200)+50

 Texture object x,3 : Rem Apply texture 3 to each cone

 do

 NoCenterX = rnd(2000)-1000

 NoCenterZ = rnd(2000)-1000

 if (NoCenterX > -150 and NoCenterX < 150 and NoCenterZ > -150

and NoCenterZ < 150) = 0 then exit

 loop

 position object x, NoCenterX,object size(x)*.75,NoCenterZ

next x

REM LOAD MODELS

REM SET COLLISIONS

set object collision on 1 : make object collision box 1, -50,-25,-50,

50,25,50, 1

set object collision off 2

for x=10 to NC

set object collision on x : make object collision box x, 0-(object

size X(x)/3),0-(object size Y(x)/3),0-(object size Z(x)/3), (object

size X(x)/3),(object size Y(x)/3),(object size Z(x)/3), 1

next x

REM SET CAMERA

cpZ# = Newzvalue(object position Z(1),object angle Y(1)-180,250)

cpX# = Newxvalue(object position X(1),object angle Y(1)-180,250)

Position camera cpX#,150,cpZ#

Point camera object position X(1),object position Y(1)+50,object

position Z(1)

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

 130

REM *** MAIN SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM SPECIAL EFFECTS

 for x=10 to NC step 3

 Scroll object texture x,0,0.005 : Rem Scroll texture up along

object every time the main section loops

 next x

 for x=10 to NC step 4

 Scroll object texture x,0.005,0 : Rem Scroll texture clockwise

around object every time the main section loops

 next x

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pY# = object position Y(1)

 1pZ# = object position Z(1)

 1aX# = object angle X(1)

 1aY# = object angle Y(1)

 1aZ# = object angle Z(1)

 REM CAMERA ORIENTATIONS

 cpX# = camera position X()

 cpY# = camera position Y()

 cpZ# = camera position Z()

 caX# = camera angle X()

 caY# = camera angle Y()

 caZ# = camera angle Z()

 REM LIVE SCREEN DISPLAY

 ink 0,rgb(255,255,255) : set text font "times" : set text size 16

: set text to bold : set text opaque

 center text 320,440,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 REM CONTROL INPUT

 if Upkey()=1

 move object 1,10

 Scroll object texture 1,0,-0.05 : Rem Scroll texture up and

forward along the cube each time the user hits up

 endif

 if Downkey()=1

 move object 1,-10

 Scroll object texture 1,0,0.05 : Rem Scroll texture down and

backward along the cube each time the user hits down

 endif

 if Leftkey()=1

 Yrotate object 1,wrapvalue(1aY#-3.5)

 backscroll = backscroll-10 : Rem Every time the user hits left,

subtract 10 from the backscroll value

 SCROLL BACKDROP backscroll, 0 : Rem Move the background left or

right, according to the backscroll value

 endif

 131

 if Rightkey()=1

 Yrotate object 1,wrapvalue(1aY#+3.5)

 backscroll = backscroll+10 : Rem Every time the user hits left,

add 10 from the backscroll value

 SCROLL BACKDROP backscroll, 0 : Rem Move the background left or

right, according to the backscroll value

 endif

 if Inkey$()="q"

 for x = 1 to 100

 if object exist(x) = 1 then delete object x

 next x

 backdrop off

 goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 REM CHECK FOR COLLISION

 1pXcol# = object position X(1)

 1pZcol# = object position Z(1)

 if 1pXcol#<-950 then 1pXcol#=-950

 if 1pZcol#<-950 then 1pZcol#=-950

 if 1pXcol#>950 then 1pXcol#=950

 if 1pZcol#>950 then 1pZcol#=950

 position object 1, 1pXcol#,1pY#,1pZcol#

 for x=10 to NC

 if object collision(1,x) = 1

 position object 1, 1pX#,1pY#,1pZ#

 endif

 next x

 1pX# = 1pXcol#

 1pZ# = 1pZcol#

 1aY# = object angle Y(1)

 REM MOVE CAMERA

 cpZ# = Newzvalue(1pZ#,1aY#-180,250)

 cpX# = Newxvalue(1pX#,1aY#-180,250)

 if cpX#<-999 then cpX#=-999 : Rem Make sure the camera is not off

the edge

 if cpZ#<-999 then cpZ#=-999

 if cpX#>999 then cpX#=999

 if cpZ#>999 then cpZ#=999

 Position camera cpX#,150,cpZ# : Rem If so, re-adjust

 Point camera 1pX#,1pY#+50,1pZ#

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 132

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto OptionsSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 133

Sounds

Sounds add a great deal to a video game. Adding sound -- good sound --

to your game is important if you expect your game to be well received.

Dull, boring sounds, slow music, poor sound quality, or no sound at all

are all fast ways to get a player to turn off your game. Fortunately, it is

very easy to add sound -- even your own voice -- to a game.

Watch the following video to learn about how sound is imported and

used inside a game program.

 VIDEO: Sounds in Game Code (4:18)

 WORKSHEET

What type of sound files can you use with this game engine?

.wav and .mp3 files

What is the command to load in a new sound?

Load sound "sounds/scifi5.wav",1

What command will play a sound once?

Play sound 1

What command will play a sound continuously?

Loop sound 7

 Your Action:

Load in certification4_4.dba. Change the volume of the song by going to the Main Section Header and

finding the line of code below REM SOUND EFFECTS.

 set sound volume 7,50 : Rem Lower the volume of sound 7

Change the 50 to 75. Run the program. Now see what happens when you change the volume to 25.

 WORKSHEET

What command do you use to set the volume of sound 7 to a level of 50?

Set sound volume 7,50

 134

certification4_4.dba

REM ***

RemStart

 *** TITLE - Sounds

 *** VERSION - 4.4 LAST UPDATED - 1.1.2000

 *** DEVELOPER - Jason Holm

 *** COPYRIGHT - Ingenious Student Labs

 *** DATE CREATED - 1.1.2000

RemEnd

REM *** START SYSTEM SETUP SECTION

sync on : sync rate 30

autocam off

hide mouse

randomize timer()

REM *** STOP SYSTEM SETUP SECTION

REM ***

REM ***

REM *** START INTRO SECTION

REM *** INTRO SECTION HEADER

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

load bitmap "images/cubetitle.bmp"

ink rgb(255,255,255),0 : set text font "arial" : set text size 14 :

set text to normal : set text transparent

center text 320,460,"Copyright (c) 2000 Ingenious Student Labs"

center text 320,440,"Music courtesy of LipRiddle"

REM LOAD SOUNDS

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** INTRO SECTION LOOP

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 x=scancode() : if Keystate(x)=1 then goto OptionsSection

 REM REFRESH SCREEN

 sync

loop

REM *** END INTRO SECTION

REM ***

 135

REM ***

REM *** START OPTIONS SECTION

REM *** OPTIONS SECTION HEADER

OptionsSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"LOADING SOUNDS" : Rem Let the player know why

the game isn't starting up immediately

sync

wait 1

REM LOAD SOUNDS  Sounds are loaded here

load sound "sounds/scifi5.wav",1 : Rem Load each sound file and give

it an id number

load sound "sounds/scifi4.wav",2

load sound "sounds/powerhum.wav",3

load sound "sounds/walk.wav",4

load sound "sounds/pop.wav",5

load sound "sounds/thunder.wav",6

load sound "sounds/wrongway.mp3",7

REM SPECIAL EFFECTS

REM REFRESH SCREEN

REM *** OPTIONS SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM SCREEN DISPLAY

 REM CONTROL INPUT

 goto MainSection

 REM REFRESH SCREEN

 sync

loop

REM *** END OPTIONS SECTION

REM ***

REM ***

REM *** START MAIN SECTION

REM *** MAIN SECTION HEADER

MainSection:

REM DECLARE VARIABLES

energy1 = 0

energy6 = 0

REM SCREEN DISPLAY

cls 0

backdrop on

color backdrop 0

 136

REM SOUND EFFECTS  Sounds are activated and edited here

play sound 1 : Rem Play a sound once

loop sound 7 : Rem Play a sound continuously

set sound volume 7,50 : Rem Lower the volume of sound 7

REM OBJECT CREATION

make object cube 1, 100 : Rem Cube

 color object 1,rgb(255,0,0)

 position object 1, 0,50,0

make object plain 2, 2000,2000 : Rem Ground

 color object 2,rgb(255,255,255)

 rotate object 2, 90,0,0

make object cylinder 3, 100 : Rem X axis

 color object 3,rgb(255,0,0)

 position object 3, 0,0,0

 scale object 3, 5,5000,5

 rotate object 3, 0,0,90

make object cylinder 4, 100 : Rem Y axis

 color object 4,rgb(0,255,0)

 position object 4, 0,0,0

 scale object 4, 5,5000,5

 rotate object 4, 0,0,0

make object cylinder 5, 100 : Rem Z axis

 color object 5,rgb(0,0,255)

 position object 5, 0,0,0

 scale object 5, 5,5000,5

 rotate object 5, 90,0,0

make object cylinder 6, 200 : Rem Cylinder

 color object 6,rgb(0,255,255)

 position object 6, -300,100,500

make object cone 7, 200 : Rem Cone

 color object 7,rgb(255,0,255)

 position object 7, 300,object size(7)*.75,500

REM LOAD MODELS

REM SET COLLISIONS

set object collision on 1

 make object collision box 1, -50,-50,-50, 50,50,50, 1

set object collision off 2

set object collision off 3

set object collision off 4

set object collision off 5

set object collision on 6

 make object collision box 6, -90,-90,-90, 90,90,90, 1

set object collision on 7

 make object collision box 7, -90,-90,-90, 90,90,90, 1

REM SET CAMERA

cpZ# = Newzvalue(object position Z(1),object angle Y(1)-180,250)

cpX# = Newxvalue(object position X(1),object angle Y(1)-180,250)

Position camera cpX#,150,cpZ#

Point camera object position X(1),object position Y(1)+50,object

position Z(1)

REM REFRESH SCREEN

sync

 137

REM *** MAIN SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM SPECIAL EFFECTS

 REM OBJECT ORIENTATIONS

 1pX# = object position X(1)

 1pY# = object position Y(1)

 1pZ# = object position Z(1)

 1aX# = object angle X(1)

 1aY# = object angle Y(1)

 1aZ# = object angle Z(1)

 REM CAMERA ORIENTATIONS

 cpX# = camera position X()

 cpY# = camera position Y()

 cpZ# = camera position Z()

 caX# = camera angle X()

 caY# = camera angle Y()

 caZ# = camera angle Z()

 REM LIVE SCREEN DISPLAY

 ink 0,rgb(255,255,255) : set text font "times" : set text size 16

: set text to bold : set text opaque

 center text 320,432,"TRANSFER ENERGY FROM THE PURPLE CONE TO THE

CYLINDER"

 center text 320,448,"PRESS 'P' TO PAUSE THE MUSIC | PRESS

SPACE BAR TO PLAY SOUND 5"

 center text 320,464,"USE ARROW KEYS TO MOVE | PRESS 'Q' TO

QUIT"

 set cursor 0,0

 ink rgb(255,255,255),0 : print "OBJECT 1"

 Rem Print Object position

 ink rgb(255,0,0),0 : print "X position: ";1pX#

 ink rgb(0,255,0),0 : print "Y position: ";1pY#

 ink rgb(0,0,255),0 : print "Z position: ";1pZ#

 print

 Rem Print Object angles

 ink rgb(255,0,0),0 : print "X angle: ";1aX#

 ink rgb(0,255,0),0 : print "Y angle: ";1aY#

 ink rgb(0,0,255),0 : print "Z angle: ";1aZ#

 print

 Rem Print "Energy Levels"

 ink rgb(150,150,150),0

 print "MY ENERGY LEVEL: ";energy1

 print "CYLINDER ENERGY STORED: ";energy6

 print

 print "MUSIC VOLUME: ";get sound volume(7) : Rem Display the

volume of sound 7

 138

 REM CONTROL INPUT

 if Upkey()=1

 move object 1,20

 if sound playing(4)=0 then play sound 4 : Rem If sound 4 isn't

already playing, then start it

 endif

 if Downkey()=1

 move object 1,-20

 if sound playing(4)=0 then play sound 4 : Rem If sound 4 isn't

already playing, then start it

 endif

 if Leftkey()=1 then Yrotate object 1,wrapvalue(1aY#-3.5)

 if Rightkey()=1 then Yrotate object 1,wrapvalue(1aY#+3.5)

 if Inkey$()="p" : Rem If the player hits 'p'

 if hitp = 0 : Rem and if the player has let go from before

 if sound paused(7)=1 then resume sound 7 else pause sound 7

 Rem If the sound is paused, resume it. If it's resumed,

pause it

 hitp = 1 : Rem Record that the player hasn't let go of the

'p' key yet

 endif

 else : Rem If the player is not hitting the 'p' key

 hitp = 0 : Rem Record that the player has let go of the 'p' key

 endif

 if Spacekey()=1 then play sound 5 : Rem start playing sound 5

every time the spacebar is hit

 if Inkey$()="q"

 for x = 1 to 100

 if object exist(x) = 1 then delete object x

 next x

 backdrop off

 goto EndSection

 endif

 REM TRANSFORM OBJECTS

 REM MOVE OBJECTS

 REM CHECK FOR COLLISION

 1pXcol# = object position X(1)

 1pZcol# = object position Z(1)

 Rem Arena Collision

 if 1pXcol#<-950 then 1pXcol#=-950

 if 1pZcol#<-950 then 1pZcol#=-950

 if 1pXcol#>950 then 1pXcol#=950

 if 1pZcol#>950 then 1pZcol#=950

 position object 1, 1pXcol#,1pY#,1pZcol#

 139

 Rem Storage cylinder collision

 if object collision(1,6) = 1

 if energy1 > 0

 dec energy1

 inc energy6

 color object 6,

rgb(rnd(105)+150,rnd(105)+150,rnd(105)+150)

 if sound playing(2)=0 then play sound 2 : Rem If sound 2

isn't already playing, then start it

 else

 stop sound 2 : Rem If energy1=0 then stop playing sound 2

 endif

 position object 1, 1pX#,1pY#,1pZ#

 else

 if sound playing(2)=1 then stop sound 2

 Rem If the cube isn't colliding with the cylinder and

sound 2 is still playing, stop it

 endif

 Rem Source Cone Collision

 if object collision(1,7) = 1

 inc energy1

 color object 1,rgb(rnd(105)+150,rnd(105)+150,rnd(105)+150)

 if sound playing(3)=0 then play sound 3 : Rem If sound 3

isn't already playing, then start it

 position object 1, 1pX#,1pY#,1pZ#

 else

 if sound playing(3)=1 then stop sound 3

 Rem If the cube isn't colliding with the cone and sound 3

is still playing, stop it

 endif

 Rem Reset Positions

 1pX# = 1pXcol#

 1pZ# = 1pZcol#

 1aY# = object angle Y(1)

 REM MOVE CAMERA

 cpZ# = Newzvalue(1pZ#,1aY#-180,300)

 cpX# = Newxvalue(1pX#,1aY#-180,300)

 if cpX#<-999 then cpX#=-999

 if cpZ#<-999 then cpZ#=-999

 if cpX#>999 then cpX#=999

 if cpZ#>999 then cpZ#=999

 Position camera cpX#,150,cpZ#

 Point camera 1pX#,1pY#+50,1pZ#

 REM REFRESH SCREEN

 sync

loop

REM *** STOP MAIN SECTION

REM ***

 140

REM ***

REM *** START END SECTION

REM *** END SECTION HEADER

EndSection:

REM DECLARE VARIABLES

REM SCREEN DISPLAY

cls 0

ink rgb(255,255,255),0 : set text font "times" : set text size 20 :

set text to bold : set text transparent

center text 320,240,"PLAY AGAIN [Y/N]?"

REM SOUND EFFECTS

for x = 1 to 1024

 if sound exist(x) =1 then stop sound x

next x

play sound 6

REM SPECIAL EFFECTS

REM REFRESH SCREEN

sync

REM *** END SECTION LOOP

do

 if scancode()=0 then exit

loop

do

 REM CONTROL INPUT

 if Inkey$()="y" then goto OptionsSection

 if Inkey$()="n"

 cls : end

 endif

 REM REFRESH SCREEN

 sync

loop

end

REM *** STOP END SECTION

REM ***

 141

Packing and Final EXE

A very important part of game design is packing and making a final EXE. This means that the game is

done and ready to share with the world. It also means that you might actually get the opportunity to sell

your game. Nobody wants to buy a game that is only partially finished. You can create a “beta” of your

game to share. A beta is a piece of software that is still in testing and that the developer takes no liability

on whether or not the software functions completely. Typically, game companies will let a few betas out

for key people to test, but for the most part, you never want to distribute any program you have not fully

tested.

It is very simple to create a final EXE, or executable, file. The EXE is the file that you can save onto a

CD and then share with your friends or family. To find out how to create a final EXE of your game,

watch the following video.

 VIDEO: Making a Final EXE (1:22)

 WORKSHEET

What is the purpose of creating a final EXE?

It allows you to distribute the game.

 142

Final Packaging Checklist

_____ The game is in its own main directory with a unique name.

_____ All the files and resources needed for the game are in the proper sub-directories under the

game’s own main directory.

_____ All paths in the main game code correctly point to the different resources.

_____ Only resources necessary for the game are included in the sub-directories.

Organization of the Game Directory

To keep the game from being “bulked up”, place only the files used in the game inside the sub-

directories. Also, the only file that should be in the main directory is the main game program.

The game’s files should be contained in a file structure that looks like this:

 MyGame (Main Directory)

 anims (Sub-directory for animations and videos)

 images (Sub-directory for images)

 models (Sub-directory for 3D models)

 sounds (Sub-directory for sounds)

 music (Sub-directory for music)

Moving a game to a new folder before creating a FINAL package

If you are moving your main program and its parts to a new directory, you must make sure that all

of the references for the different resources (images, sounds, models, animations) have correct

paths in the code. For example, the correct path for any of the sub-directories shown above is the

directory name/name of file including extension. An image named can.bmp has a path of

images/can.bmp.

Error 10

If you have a path incorrect, or your final packaged game cannot

find a file, you will see the Runtime Error 10 box appear. If you

see this when running your final packaged game, go back and

check to see that all the resources are in their correct sub-

directories and that the paths in the main program correctly

point to the resource.

 143

Additional Resources

 144

Suggested Teaching Timelines for Video Game Development

9-Weeks Plan Project Phase

1 One / Carbonade 1-2

2 One / Carbonade 3

3 One / Carbonade 4

4 One / Carbonade 4-5

5 One / Carbonade 5

6 One / Carbonade 5

7 One / Carbonade 5

8 One / Carbonade 6

9 One / Carbonade 7

18-Weeks Plan Project Phase

1 One / Carbonade 1-2

2 One / Carbonade 3

3 One / Carbonade 4

4 One / Carbonade 4-5

5 One / Carbonade 5

6 One / Carbonade 5

7 One / Carbonade 6

8 One / Carbonade 7

9 Wrap-Up Portfolio & Finalize .exe

10 Two / Bacteria Bash 1

11 Two / Bacteria Bash 2

12 Two / Bacteria Bash 3

13 Two / Bacteria Bash 4

14 Two / Bacteria Bash 5

15 Two / Bacteria Bash 5

16 Two / Bacteria Bash 6

17 Two / Bacteria Bash 6-7

18 Two / Bacteria Bash Wrap-Up

36-Weeks Plan Project Phase

Weeks 1-6 One / Carbonade 1-3

Weeks 7-12 One / Carbonade 4-5

Weeks 13-18 One / Carbonade 6-7

Weeks 19-24 Two / Bacteria Bash 1-3

Weeks 25-30 Two / Bacteria Bash 4-5

Weeks 31-36 Two / Bacteria Bash 6-7

 145

Goals for the Development Meeting (Initial Staff Meeting)

Purpose

 To foster the environment and to activate prior knowledge, as well as be part of the anticipatory

set of the class

Environment(s) to Foster/Establish

 Culture (Home)

 Business Office

 Teacher/Supervisor—Student/Employee

Teacher Benefits

 What experiences they have had w/ video games

 What programming experiences they have had

 Become aware of “personal situations” like culture, home-life, etc.

Student Gains

 Expectations

 Further explain the program structure

 A connection that would allow the student to feel comfortable asking questions

Script—Initial Meeting (Whole Class)

“This class is an opportunity to create video games and will be a different setting than the traditional

classroom setting.”

“You will be interns working for Ingenious Student Labs, where you will be meeting the expectations of

a company, learning job skills and professional behavior.”

“My job will have multiple hats including being the teacher but also being your supervisor, and often

times a consultant.”

“You will be expected to meet certain training requirements including becoming certified in Dark Basic.

To start with, I would like you to watch this video that will introduce you to the use of the software.

(Show student orientation video.) I want you to know that anytime that you have a question for me as a

supervisor/teacher you can email me through the system using the PDA.”

“Knowing that you will be designing a video game, I want you to begin thinking about the types of

video games that you currently play.” (Begin making a concept web.)

[1
st
 Person Shooter, RTS (Real-Time Strategy), RPG (Role Playing Game), Sports, Platforming,

Puzzles]

“What specific games do you like to play regarding these types of video games?”

[1
st
 Person Shooter—Halo; RTS—Warcraft; RPG—SIMS; Sports—Madden NFL; Platforming—

SuperMario Bros.; Puzzle--Tetris

“What are specific features of these games that you enjoy in the game? What sets it apart from other

similar games?”

Relate with the students how the games that you have been discussing relates to what they could

program their video game to do.

 146

Follow-up Development Meetings

Development Meeting (Post Phase 4??) Small Group Meeting??

 Discuss with the students how they can plan and develop ideas for video games using a flowchart

organizational system and a storyboard. You could use one of the example video games from

the student files to model this.

Development Meeting (Check for Understanding)--Can be used anytime with Small Group or Whole

Class

 Use the KWL find out what the students have learned thus far and what interests the students

have developed with the curriculum. This is an excellent opportunity to review essential

vocabulary and concepts that the students have been working with in the curriculum.

Development Meeting (Showcase student learning and discovery)--Whole Class

 This meeting can be just a short meeting to celebrate student learning and discovery in your

classroom. Or it could be added on to another planned meeting. For example, if Susie found a

particular color or texture that is unusual have her share with the class how she found it.

Development Meeting (Review and informally assess)

 Use essential vocabulary words and concepts to play a game similar to Pictionary with the

students. This is fun way to review terms and concepts that students use in the curriculum.

Pictionary© is a registered trademark of Pictionary Incorporated.

 147

3-D Coordinate System/Starship Game

Objective: The student will practice using a 3-D coordinate system (x, y, z) by finding locations in a

room setting.

Materials: Various objects (balls, stuffed animals, chairs, desks, etc.); red yarn; green yarn; blue yarn;

sticky notes/notecards; masking tape; 2 computers with IM capabilities or 2 walkie-talkies (optional for

game)

Set-up: Set up classroom to be a 3-D Coordinate System with red yarn suspended from the walls left to

right for the x-axis, green yarn suspended from the middle of the ceiling to the middle of the floor for

a y-axis, and blue yarn suspended from the walls from back to front for a z-axis. The center of the room

where all 3 strings meet is (0, 0, 0). Label the axes at points such as 0, 1000, 2000, 3000, etc.

Anticipatory Set: Involve students in a conversation regarding the game of Battleship, include

conversation points that involve the x- and y-axes. Allude to the students that they will be participating

in a game similar to Battleship that also involves the z-axis.

Teacher Input/Modeling:

1. Review the x-, y- and z-axes with students and locate various objects in the room. For

example: desks, chairs, etc. Students may be asked to give coordinate locations of other objects

to check for understanding.

 2. Students can also be involved in this as well (keep their attention!) by the

 following set of instructions:

- “If I have a desk located at (1000, -3000, 4000), and I wanted to place Billy behind the

desk according to our current camera view, what coordinates would I place Billy at?”

-”If I have a chair located at (2000, -2500, 3300), and I wanted to place Susie on top of

the chair, what coordinates would I place Susie at?”

 -Hold various objects up in the room and have students state their locations.

Guided Practice: Have the students find a place in the room to sit, stand, etc. and then ask each one to

give their coordinate location. Assist as needed.

Guided/Independent Practice: (Optional Game)

 1. Set up a 3-D coordinate system in two adjoining rooms.

 2. Divide students into two teams.

3. Have students place 1 or 2 objects in various parts of the coordinate grid. (Objects may need

some “help” with elevation on the y-axis, such as placing a stuffed bear on top of a chair.)

4. Using computers with Instant Messaging capabilities or walkie-talkies, have Team 1 fire at a

location in the opposite room. Members from Team 2 would then indicate to the other students

where the shot was located in relation to the object (to the left or right, above or below, in front

of or in back of).

 5. Team 2 would then fire at Team 1's object and so on.

Closure: After bringing students back together, discuss what they learned from the experience.

Discuss how this relates to placing objects in a video game. Illustrate this by running the program

Certification 3_4 in DarkBASIC.

Lesson created by: Kendal Berrey

I Support Learning, Inc.
Battleship© is a registered trademark of Hasbro, Inc.

 148

Ideas for Classroom

 Following the internship emphasis, have students create business cards for themselves

 When sending emails to interns, sign off as their supervisor

 Create a company name for your classroom

 Show “The Making of Finding Nemo” (documentary section of Disk 1)

o To emphasize teamwork; storyboarding; importance of planning; demonstrate thought

process for large projects

 After Bacteria Bash, have students return to the game they created in Carbonade and apply the

skills they learned in Project 2

 If your district has access to United Streaming, use the video of the interview with Nathan

Sitkoff, video game designer

 Cheat Sheet: have students write shortcuts in a central location, then during “development

meetings” have them give details on the shortcut.

 Have students create commercial after completing their game

 Have students design the cover for their game

